小明在玩一副三角板時發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長直角邊完全重合(如圖①).即△C´DA´的頂點(diǎn)A´、C´分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C´DA´固定不動,將△BAC通過變換使斜邊BC經(jīng)過△C´DA´的直角頂點(diǎn)D.

(1)如圖②,將△BAC繞點(diǎn)C按順時針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=  °.

(2)如圖③,將△BAC繞點(diǎn)A按逆時針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A´C´.

(3)如圖④,若AB=,將將△BAC沿射線A´C´方向平移m個單位長度,使BC邊經(jīng)過點(diǎn)D,求m的值.

 

【答案】

(1)15°;(2)過點(diǎn)A作AH⊥BC.垂足為H.根據(jù)旋轉(zhuǎn)可得:旋轉(zhuǎn)角∠CA C´=∠BAH.在Rt△ABC中,由AH⊥BC可得∠C=∠BAH,則∠CA C´=∠C,從而可以證得結(jié)論;(3)

【解析】

試題分析:(1)根據(jù)旋轉(zhuǎn)角的定義結(jié)合直角三角板的特征即可求得結(jié)果;

(2)過點(diǎn)A作AH⊥BC.垂足為H.根據(jù)旋轉(zhuǎn)可得:旋轉(zhuǎn)角∠CA C´=∠BAH.在Rt△ABC中,由AH⊥BC可得∠C=∠BAH,則∠CA C´=∠C,從而可以證得結(jié)論;

(3)過點(diǎn)D作DH⊥AC,垂足為H.由DH=A´C´=,△DHC∽△BAC,根據(jù)相似三角形的性質(zhì)可得CH=,即可求得結(jié)果.

(1)如圖②,α=∠A´C´A=45°-30°=15°;

(2)如圖③,過點(diǎn)A作AH⊥BC.垂足為H.

根據(jù)旋轉(zhuǎn)可得:旋轉(zhuǎn)角∠CA C´=∠BAH.

在Rt△ABC中,∵AH⊥BC,

∴∠C=∠BAH

∴∠CA C´=∠C

∴BC∥A´C´;

(3)如圖④,過點(diǎn)D作DH⊥AC,垂足為H.

由DH=A´C´=,△DHC∽△BAC,可得CH=

所以m的值為

考點(diǎn):旋轉(zhuǎn)問題的綜合題

點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江都市二模)小明在玩一副三角板時發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長直角邊完全重合(如圖①).即△C′DA′的頂點(diǎn)A′、C′分別與△BAC的頂點(diǎn)A、C重合.其中AB=
2
,現(xiàn)在,他讓△C′DA′固定不動,
將△BAC通過變換使斜邊BC經(jīng)過△C?DA?的直角頂點(diǎn)D.
(1)求A′D的長度.
(2)如圖②,將△BAC繞點(diǎn)C按順時針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=
15
15
°.
(3)如圖③,將△BAC繞點(diǎn)A按逆時針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.求點(diǎn)C走過的路線長.
(4)如圖④,將△BAC沿射線A′C′方向平移m個單位長度,使BC邊經(jīng)過點(diǎn)D,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大慶模擬)小明在玩一副三角板時發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長直角邊完全重合(如圖①).即△C′DA′的頂點(diǎn)A′、C′分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C′DA′固定不動,將△BAC通過變換使斜邊BC經(jīng)過△C′DA′的直角頂點(diǎn)D.
(1)如圖②,將△BAC繞點(diǎn)C按順時針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=
15
15
°.
(2)如圖③,將△BAC繞點(diǎn)A按逆時針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A′C′.
(3)如圖④,若AB=
2
,將△BAC沿射線A′C′方向平移m個單位長度,使BC邊經(jīng)過點(diǎn)D,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南京市聯(lián)合體(棲霞下關(guān)雨花臺等)九年級中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題

小明在玩一副三角板時發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長直角邊完全重合(如圖①).即△C´DA´的頂點(diǎn)A´、C´分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C´DA´固定不動,將△BAC通過變換使斜邊BC經(jīng)過△C´DA´的直角頂點(diǎn)D.

(1)如圖②,將△BAC繞點(diǎn)C按順時針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=  °.
(2)如圖③,將△BAC繞點(diǎn)A按逆時針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A´C´.
(3)如圖④,若AB=,將將△BAC沿射線A´C´方向平移m個單位長度,使BC邊經(jīng)過點(diǎn)D,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南京市聯(lián)合體中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

小明在玩一副三角板時發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長直角邊完全重合(如圖①).即△C′DA′的頂點(diǎn)A′、C′分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C′DA′固定不動,將△BAC通過變換使斜邊BC經(jīng)過△C′DA′的直角頂點(diǎn)D.
(1)如圖②,將△BAC繞點(diǎn)C按順時針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=______°.
(2)如圖③,將△BAC繞點(diǎn)A按逆時針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A′C′.
(3)如圖④,若AB=,將△BAC沿射線A′C′方向平移m個單位長度,使BC邊經(jīng)過點(diǎn)D,求m的值.

查看答案和解析>>

同步練習(xí)冊答案