【題目】 若一個(gè)三角形兩邊長(zhǎng)分別是5cm和8cm,則第三邊長(zhǎng)可能是( )
A.14cmB.13cmC.10cmD.-3cm
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果市場(chǎng)將120噸水果運(yùn)往各地商家,現(xiàn)有甲、乙、丙三種車(chē)型供選擇,每輛車(chē)的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車(chē)均滿載)
車(chē)型 | 甲 | 乙 | 丙 |
汽車(chē)運(yùn)載量(噸/輛) | 5 | 8 | 10 |
汽車(chē)運(yùn)費(fèi)(元/輛) | 400 | 500 | 600 |
(1)若全部水果都用甲、乙兩種車(chē)型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車(chē)型各幾輛?
(2)為了節(jié)約運(yùn)費(fèi),市場(chǎng)可以調(diào)用甲、乙、丙三種車(chē)型參與運(yùn)送(每種車(chē)型至少1輛),已知它們的總輛數(shù)為16輛,你能通過(guò)列方程組的方法分別求出幾種車(chē)型的輛數(shù)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P(x,y),若點(diǎn)Q的坐標(biāo)為(x+ay,ax+y)(其中a為常數(shù),且a≠0),則稱(chēng)Q是點(diǎn)P的“a系聯(lián)動(dòng)點(diǎn)”.例如:點(diǎn)P(1,2)的“3系聯(lián)動(dòng)點(diǎn)”Q的坐標(biāo)為(7,5).
(1)點(diǎn)(3,0)的“2系聯(lián)動(dòng)點(diǎn)”的坐標(biāo)為 ;若點(diǎn)P的“系聯(lián)動(dòng)點(diǎn)”的坐標(biāo)是(,0),則點(diǎn)P的坐標(biāo)為 ;
(2)若點(diǎn)P(x,y)的“a系聯(lián)動(dòng)點(diǎn)”與“系聯(lián)動(dòng)點(diǎn)”均關(guān)于x軸對(duì)稱(chēng),則點(diǎn)P分布在 ,請(qǐng)證明這個(gè)結(jié)論;
(3)在(2)的條件下,點(diǎn)P不與原點(diǎn)重合,點(diǎn)P的“a系聯(lián)動(dòng)點(diǎn)”為點(diǎn)Q,且PQ的長(zhǎng)度為OP長(zhǎng)度的3倍,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,A、B、C、D 為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=
6cm,動(dòng)點(diǎn)P、Q 分別從A、C 同時(shí)出發(fā),點(diǎn)P 以3cm/s的速度向點(diǎn)B 移動(dòng),
一直到達(dá)點(diǎn) B 為止,點(diǎn) Q 以2cm/s的速度向點(diǎn) D 移動(dòng).
(1)P、Q 兩點(diǎn)從出發(fā)點(diǎn)出發(fā)幾秒時(shí),四邊形PBCQ 的面積是33cm2?
(2)P、Q 兩點(diǎn)從出發(fā)點(diǎn)出發(fā)幾秒時(shí),點(diǎn)P、Q 間的距離是10cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=30°,∠B=60°,AB⊥AC.
(1)∠DAB+∠B等于多少度?(2)AD與BC平行嗎?AB與CD平行嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自行車(chē)的車(chē)輪輻條是一條線,當(dāng)車(chē)輪飛速旋轉(zhuǎn)時(shí),輻條就飛速轉(zhuǎn)動(dòng)形成( 。
A.點(diǎn)B.線C.面D.體
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-(2m+1)x+m2+m=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1,x2,且滿足=13,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景
如圖,在正方形的內(nèi)部,作,根據(jù)三角形全等的條件,易得≌≌≌,從而得到四邊形是正方形.
類(lèi)比探究
如圖,在正的內(nèi)部,作, , , 兩兩相交于, , 三點(diǎn)(, , 三點(diǎn)不重合).
(), , 是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明.
()是否為正三角形?請(qǐng)說(shuō)明理由.
()進(jìn)一步探究發(fā)現(xiàn),圖中的的三邊存在一定的等量關(guān)系,設(shè), , ,請(qǐng)?zhí)剿?/span>, , 滿足的等量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com