如圖,將△ABC的三邊分別擴(kuò)大一倍得到△(頂點(diǎn)均在格點(diǎn)上),若它們是以P點(diǎn)為位似中心的位似圖形,則P點(diǎn)的坐標(biāo)是(    ).
A.B.C.D.
D
∵△ABC的三邊分別擴(kuò)大一倍得到△A1B1C1(頂點(diǎn)均在格點(diǎn)上),它們是以P點(diǎn)為位似中心的位似圖形,根據(jù)位似圖形的性質(zhì),對(duì)應(yīng)點(diǎn)的坐標(biāo)相交于一點(diǎn),連接AA1,BB1,CC1,交點(diǎn)即是P點(diǎn)坐標(biāo),∴如圖所示,P點(diǎn)的坐標(biāo)為:(-4,-3).故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在6×8的網(wǎng)格紙中,每個(gè)小正方形的邊長(zhǎng)都為1,動(dòng)點(diǎn)P、Q分別從點(diǎn)F、A出發(fā)向右移動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)E時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng)。

(1)請(qǐng)?jiān)?×8的網(wǎng)格紙中畫(huà)出運(yùn)動(dòng)時(shí)間t為2秒時(shí)的線段PQ;
(2)如圖2,動(dòng)點(diǎn)P、Q在運(yùn)動(dòng)的過(guò)程中,PQ能否垂直于BF?請(qǐng)說(shuō)明理由。
(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,△PQB能否成為等腰三角形?若能,請(qǐng)求出相應(yīng)的運(yùn)動(dòng)時(shí)間t;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一塊直角三角板的直角頂點(diǎn)P放在正方形ABCD的BC邊上,并且使一條直角邊經(jīng)過(guò)點(diǎn)D,另一條直角邊與AB交于點(diǎn)Q.

(1)請(qǐng)你寫(xiě)出一對(duì)相似三角形,并加以證明;
(2)當(dāng)點(diǎn)P滿(mǎn)足什么條件時(shí), ,請(qǐng)證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在比例尺為1∶1 00 000的地圖上,量得甲、乙兩地的距離是15cm,則兩地的實(shí)際距離 ▲ km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B=900,點(diǎn)P在BC邊上,當(dāng)
∠APD=900時(shí),易證,從而得到,解答下列問(wèn)題.
(1)模型探究1:如圖2,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí), 結(jié)論仍成立嗎? 試說(shuō)明理由;
(2)拓展應(yīng)用:如圖3,M為AB的中點(diǎn),AE與BD交于點(diǎn)C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=,AF=3,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC是等邊三角形,被一平行于BC的矩形所截,AB被截成三等分,則圖中陰影部分的面積是△ABC的面積的(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)θ度,并使各邊長(zhǎng)變?yōu)樵瓉?lái)的n倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].

(1)如圖①,對(duì)△ABC作變換[60°,]得△AB′C′,則S△AB′C′:S△ABC=   ;直線BC與直線B′C′所夾的銳角為   度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得△AB'C',使點(diǎn)B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對(duì)△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC中,∠BAC=90°,正方形的一邊GF在BC上,其余兩個(gè)頂點(diǎn)D,E分別在AB,AC上.連接AG,AF分別交DE于M,N兩點(diǎn).
(1)求證:.
(2)求證:
(3)若AB=AC=2,求MN的長(zhǎng).
    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在中,點(diǎn)分別在邊上,,=6,=2,當(dāng)面積是3時(shí),則梯形的面積是     

查看答案和解析>>

同步練習(xí)冊(cè)答案