17、如圖,在平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)O的直線EF分別交AB、CD于E、F.請(qǐng)寫出圖中三對(duì)全等的三角形:
△AOD≌△COB
△EOB≌△FOD
;
△COF≌△AOE
;請(qǐng)你自選其中的一對(duì)加以證明.
分析:因?yàn)槠叫兴倪呅蜛BCD,所以O(shè)D=OB,OA=OC,∠AOD=∠COB,所以△AOD≌△COB,同理可根據(jù)平行四邊形的性質(zhì),也可證其它幾對(duì)三角形全等.
解答:解:有:△AOD≌△COB,△EOB≌△FOD,△COF≌△AOE,△COD≌△AOB,△ACD≌△CAB,△ABD≌△CDB.(只需三對(duì)即可)
證明:∵平行四邊形ABCD
∴OD=OB,OA=OC,
又∠AOD=∠COB,
∴△AOD≌△COB.
故填空答案:△AOD≌△COB,△EOB≌△FOD,△COF≌△AOE.
點(diǎn)評(píng):此題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵根據(jù)其性質(zhì),證明三角形全等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案