求證:不論a為何實數(shù),方程組恒有解.
【答案】分析:要證明不論a為何實數(shù),方程組恒有解,可代入法得到關(guān)于x的方程,證明△≥0即可.
解答:解:,
由①得y=ax-1,
代入②得x2+ax-1-2x=0,即x2+(a-2)x-1=0,
∵△=(a-2)2-4×1×(-1)=(a-2)2+4,
而(a-2)2≥0,
∴(a-2)2+4>0,
即△>0,
所以不論a為何實數(shù),方程組恒有解.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.也考查了代數(shù)式的變形能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點.
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實數(shù),此函數(shù)的圖象與x軸總有兩個交點;
(2)當(dāng)兩個交點間的距離為
29
時,求a的值;
(3)在(2)的條件下求出函數(shù)的最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道:對于任何實數(shù)x,①∵x2≥0,∴x2+1>0;   ②∵(x-1)2≥0,∴x2-2x+
3
2
=(x-1)2+
1
2
>0;模仿上述方法解答:
(1)求證:對于任何實數(shù)x,總有:2x2+4x+3>0;
(2)我們還知道,如果a-b>0,那么a>b,運用這條性質(zhì),求證:不論x為何實數(shù),多項式3x2-5x-1的值總大于2x2-4x-7的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•婁底)已知:一元二次方程
1
2
x2+kx+k-
1
2
=0.
(1)求證:不論k為何實數(shù)時,此方程總有兩個實數(shù)根;
(2)設(shè)k<0,當(dāng)二次函數(shù)y=
1
2
x2+kx+k-
1
2
的圖象與x軸的兩個交點A、B間的距離為4時,求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點為C,過y軸上一點M(0,m)作y軸的垂線l,當(dāng)m為何值時,直線l與△ABC的外接圓有公共點?

查看答案和解析>>

同步練習(xí)冊答案