【題目】如圖1,在Rt△ABC中,∠ABC=90°,AB=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<90°),連接BD交CE于點(diǎn)F.
(1)如圖2,當(dāng)α=45°時(shí),求證:CF=EF;
(2)在旋轉(zhuǎn)過(guò)程中,①問(wèn)(1)中的結(jié)論是否仍然成立?證明你的結(jié)論;②連接CD,當(dāng)△CDF為等腰直角三角形時(shí),求tan的值.
【答案】(1)見(jiàn)解析;(2) ① 成立,理由見(jiàn)解析;②
【解析】
(1)如圖中,由∠EAC=∠DAB,AE=AC,AD=AB,可得∠AEC=∠ACE=∠ADB=∠ABD,繼而可得FD=FC,再根據(jù)∠EDC=90°,繼而可推導(dǎo)得出∠FED=∠FDE,可得FE=FD,即可求得EF=FC;
(2)①如圖1中,結(jié)論仍然成立.理由:連接AF,由旋轉(zhuǎn)的性質(zhì)可推導(dǎo)得出∠FCA=∠ABF,從而可得A,B,C,F四點(diǎn)共圓,繼而根據(jù)圓內(nèi)接四邊形的性質(zhì)可求得∠AFC=90°,有AF⊥EC,再根據(jù)AE=AC,即可求得EF=CF;
②分CF=CD,∠FCD=90°和DF=DC,∠CDF=90°兩種情況分別進(jìn)行討論即可得.
(1)如圖中,
∵∠EAC=∠DAB,AE=AC,AD=AB,
∴∠AEC=∠ACE=∠ADB=∠ABD,
∵∠ADB=∠CDF,
∴∠FDC=∠FCD,
∴FD=FC,
∵∠EDC=90°,
∴∠DEF+∠ECD=90°,∠FDE+∠FDC=90°,
∴∠FED=∠FDE,
∴FE=FD,
∴EF=FC.
(2)①如圖1中,結(jié)論仍然成立.
理由:連接AF.
∵AB=AD,AE=AC,
∴∠ABD=∠ADB,∠ACE=∠EAC,
又∵∠BAD=∠CAE,∠ABD+∠ADB+∠BAD=180°,∠ACE+∠EAC+∠CAE=180°,
∴∠FCA=∠ABF,
∴A,B,C,F四點(diǎn)共圓,
∴∠AFC+∠ABC=180°,
∵∠ABC=90°,
∴∠AFC=90°,
∴AF⊥EC,
∵AE=AC,
∴EF=CF.
②如圖3﹣1中,當(dāng)CF=CD,∠FCD=90°時(shí),連接AF,作CH⊥BF于H.設(shè)CF=CD=a.
則DE=,DF=a,
∵CF=CD,CH⊥DF,
∴HF=HD,
∴CH=DF=a,
∴BC=DE=a,
∴BH=,
∵AE=AC,EF=CF,
∴AF平分∠EAC,
∵A,B,C,F四點(diǎn)共圓,
∴∠CAF=∠CBH=α,
∴tanα==;
如圖3﹣2中,當(dāng)DF=DC,∠CDF=90°時(shí),作DH⊥CF于H,連接AF.設(shè)CD=DF=m.
則CF=EF=a,DH=CF=m,
∴DE=BC=m,
∴BD==2m,
∴tanα==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)舉國(guó)上下抗擊新型冠狀病毒的斗爭(zhēng),疫情得到了有效控制,國(guó)內(nèi)各大企業(yè)在2月9日后紛紛進(jìn)入復(fù)工狀態(tài).為了了解全國(guó)企業(yè)整體的復(fù)工情況,我們查找了截止到2020年3月1日全國(guó)部分省份的復(fù)工率,并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了一些信息:
a.截止3月1日20時(shí),全國(guó)已有11個(gè)省份工業(yè)企業(yè)復(fù)工率在90%以上,主要位于東南沿海地區(qū),位居前三的分別是貴州(100%)、浙江(99.8%)、江蘇(99%).
b.各省份復(fù)工率數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成6組,分別是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如圖2,在b的基礎(chǔ)上,畫(huà)出扇形統(tǒng)計(jì)圖:
d.截止到2020年3月1日各省份的復(fù)工率在80<x≤90這一組的數(shù)據(jù)是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的復(fù)工率的平均數(shù)、中位數(shù)、眾數(shù)如下:
日期 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
截止到2020年3月1日 | 80.79 | m | 50,90 |
請(qǐng)解答以下問(wèn)題:
(1)依據(jù)題意,補(bǔ)全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計(jì)圖中50<x≤60這組的圓心角度數(shù)是 度(精確到0.1).
(3)中位數(shù)m的值是 .
(4)根據(jù)以上統(tǒng)計(jì)圖表簡(jiǎn)述國(guó)內(nèi)企業(yè)截止3月1日的復(fù)工率分布特征.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D是BC邊上異于點(diǎn)B,C的一動(dòng)點(diǎn),將三角形ABD沿AB翻折得到△ABD1,將△ACD沿AC翻折得到△ACD2,連接D1D2,則四邊形D1BCD2的面積的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,AB=1,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△AEF,連接DF,則DF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)C、D在線段AB上,若點(diǎn)C是線段AD的中點(diǎn),2BD>AD,則下列結(jié)論正確的是( ).
A. CD<AD- BD B. AB>2BD C. BD>AD D. BC>AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】題目:某校七年級(jí)學(xué)生乘車(chē)去參加社會(huì)實(shí)踐活動(dòng),若每輛客車(chē)乘50人,還有12人不能上車(chē);若每輛客車(chē)乘55人,則最后一輛空了8個(gè)座位,求該校租這種客車(chē)的輛數(shù):
根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:
小明列出不完整的方程為
小紅列出不完整的方程為
(說(shuō)明:其中“”表示運(yùn)算符號(hào),“”表示數(shù)字):
(1)小明所列方程中表示的意義是________________________;
小紅所列方程中表示的意義是___________________________;
(2)選擇兩位同學(xué)的其中一位學(xué)生的做法,將其補(bǔ)充完整,并完整地解答這道題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情無(wú)情人有情,愛(ài)心捐款傳真情.新冠肺炎疫情發(fā)生后,某班學(xué)生積極參加獻(xiàn)愛(ài)心活動(dòng),該班名學(xué)生的捐款統(tǒng)計(jì)情況如下表,關(guān)于捐款金額,下列說(shuō)法錯(cuò)誤的是( )
金額/元 | 10 | 20 | 30 | 50 | 100 |
人數(shù) | 2 | 18 | 10 | 8 | 2 |
A.平均數(shù)為元B.眾數(shù)為元C.中位數(shù)為元D.極差為元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)A(﹣1,3),與x軸的一個(gè)交點(diǎn)B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①2a﹣b=0;②abc<0;③拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)是(3,0);④方程ax2+bx+c﹣3=0有兩個(gè)相等的實(shí)數(shù)根;⑤當(dāng)﹣4<x<﹣1時(shí),則y2<y1.
其中正確的是( 。
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:當(dāng)點(diǎn)P在射線OA上時(shí),把的的值叫做點(diǎn)P在射線OA上的射影值;當(dāng)點(diǎn)P不在射線OA上時(shí),把射線OA上與點(diǎn)P最近點(diǎn)的射影值,叫做點(diǎn)P在射線OA上的射影值.
例如:如圖1,△OAB三個(gè)頂點(diǎn)均在格點(diǎn)上,BP是OA邊上的高,則點(diǎn)P和點(diǎn)B在射線OA上的射影值均為=.
(1)在△OAB中,
①點(diǎn)B在射線OA上的射影值小于1時(shí),則△OAB是銳角三角形;
②點(diǎn)B在射線OA上的射影值等于1時(shí),則△OAB是直角三角形;
③點(diǎn)B在射線OA上的射影值大于1時(shí),則△OAB是鈍角三角形.
其中真命題有 .
A.①②B.①③C.②③D.①②③
(2)已知:點(diǎn)C是射線OA上一點(diǎn),CA=OA=1,以〇為圓心,OA為半徑畫(huà)圓,點(diǎn)B是⊙O上任意點(diǎn).
①如圖2,若點(diǎn)B在射線OA上的射影值為.求證:直線BC是⊙O的切線;
②如圖3,已知D為線段BC的中點(diǎn),設(shè)點(diǎn)D在射線OA上的射影值為x,點(diǎn)D在射線OB上的射影值為y,直接寫(xiě)出y與x之間的函數(shù)關(guān)系式為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com