【題目】如圖,在RtABC中,∠C90°,sinB,點DBC邊上,∠ADC45°,DC6,tanBAD___

【答案】.

【解析】

D點作DEAB,交ABE點,把構造到直角三角形中,要求的正切值,只需求得DE、AE的長,根據(jù)等腰三角形的性質可以求得AC、AD的長,在直角三角形ABC中,根據(jù)sinB,可以求得AB的長,根據(jù)勾股定理進一步求得BC的長,從而求得BD的長,在直角三角形BDE中,根據(jù)sinB,進一步求得DE的長,根據(jù)勾股定理求得BE的長,即可進行計算.

D點作DEAB,交ABE點,

RtADC中,∠C90°,∠ADC45°DC6,

∴∠DAC45°

ACDC6,

RtABC中,∠C90°,

sinB,

,

AC3k,則AB5k,

3k6,

k2,

AB5k10,

根據(jù)勾股定理,得BC8,

BDBCDC862

RtBDE中,∠BED90°,sinB,

,DE

根據(jù)勾股定理,得BE,

AEABBE10

tanBAD×

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;

連接MN,分別交AB、AC于點D、O;

CCE∥ABMN于點E,連接AE、CD.

則四邊形ADCE的周長為( 。

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關系式;

(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個加油站AB,它們相距200千米,當客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=COD=50°,連接AC,BD

交于點M

的值為 ;②∠AMB的度數(shù)為 °;

2)如圖2,在△OAB和△OCD中,∠AOB=COD=90°,∠OAB=OCD=30°,連接ACBD的延長線于點M.求的值及∠AMB的度數(shù);

3)在(2)的條件下,將△OCD繞點O在平面內旋轉,AC,BD所在直線交于點M.若OD=,OB=,請直接寫出當點C與點M重合時AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC在平面直角坐標系內,頂點的坐標分別為A(﹣4,4),B(﹣2,5),C(﹣2,1).

(1)平移ABC,使點C移到點C1(﹣2,﹣4),畫出平移后的A1B1C1,并寫出點A1,B1的坐標;

(2)ABC繞點(0,3)旋轉180°,得到A2B2C2,畫出旋轉后的A2B2C2

(3)(2)中的點C旋轉到點C2時,點C經(jīng)過的路徑長結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點D、F分別在邊AB、AC上,請直接寫出線段BD、CF的數(shù)量和位置關系;

2)拓展探究:如圖2,當正方形ADEF繞點A逆時針旋轉銳角θ時,上述結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAB的中點,以CD為直徑的⊙O分別交AC,BC于點E,F兩點,過點FFGAB于點G

1)試判斷FG與⊙O的位置關系,并說明理由.

2)若AC3,CD2.5,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點P是BA延長線上一點,PC是⊙O的切線,切點為C,過點B作BD⊥PC交PC的延長線于點D,連接BC.求證:

(1)∠PBC=∠CBD;

(2)=ABBD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠C90°,AC2BC2,點O是邊AB上的一個動點,以點O為圓心,OA為半徑作⊙O,與邊AC交于點M

1)如圖1,當⊙O經(jīng)過點C時,⊙O的直徑是   ;

2)如圖2,當⊙O與邊BC相切時,切點為點N,試求⊙OABC重合部分的面積;

3)如圖3,當⊙O與邊BC相交時,交點為E、F,設CMx,就判斷AEAF是否為定值,若是,求出這個定值;若不是,請用含x的代數(shù)式表示.

查看答案和解析>>

同步練習冊答案