(2006•宿遷)如圖,在?ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點(diǎn)E、F,AE、BF相交于點(diǎn)M.
(1)試說明:AE⊥BF;
(2)判斷線段DF與CE的大小關(guān)系,并予以說明.

【答案】分析:(1)因?yàn)锳E,BF分別是∠DAB,∠ABC的角平分線,那么就有∠MAB=∠DAB,∠MBA=∠ABC,而∠DAB與∠ABC是同旁內(nèi)角互補(bǔ),所以,能得到∠MAB+∠MBA=90°,即得證.
(2)兩條線段相等.利用平行四邊形的對邊平行,以及角平分線的性質(zhì),可以得到△ADE和△BCF都是等腰三角形,那么就有CF=BC=AD=DE,再利用等量減等量差相等,可證.
解答:解:
(1)方法一:如圖①,
∵在?ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.(1分)
∵AE、BF分別平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.(2分)
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.(3分)
∴∠AMB=90°.
∴AE⊥BF.(4分)
方法二:如圖②,延長BC、AE相交于點(diǎn)P,
∵在?ABCD中,AD∥BC,
∴∠DAP=∠APB.(1分)
∵AE平分∠DAB,
∴∠DAP=∠PAB.(2分)
∴∠APB=∠PAB.
∴AB=BP.(3分)
∵BF平分∠ABP,
∴AP⊥BF,
即AE⊥BF.(4分)

(2)方法一:線段DF與CE是相等關(guān)系,即DF=CE,(5分)
∵在?ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.
∴∠DEA=∠DAE.
∴DE=AD.(6分)
同理可得,CF=BC.(7分)
又∵在?ABCD中,AD=BC,
∴DE=CF.
∴DE-EF=CF-EF.
即DF=CE.(8分)
方法二:如圖,延長BC、AE設(shè)交于點(diǎn)P,延長AD、BF相交于點(diǎn)O,
∵在?ABCD中,AD∥BC,
∴∠DAP=∠APB.
∵AE平分∠DAB,
∴∠DAP=∠PAB.
∴∠APB=∠PAB.
∴BP=AB.
同理可得,AO=AB.
∴AO=BP.(6分)
∵在?ABCD中,AD=BC,
∴OD=PC.
又∵在?ABCD中,DC∥AB,
∴△ODF∽△OAB,△PCE∽△PBA.(7分)
==
∴DF=CE.(8分)
點(diǎn)評:本題利用了角平分線的性質(zhì),平行四邊形的性質(zhì)以及等量減等量差相等等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•宿遷)如圖,拋物線y=-x2+x-2與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C.
(1)求證:△AOC∽△COB;
(2)過點(diǎn)C作CD∥x軸交拋物線于點(diǎn)D.若點(diǎn)P在線段AB上以每秒1個單位的速度由A向B運(yùn)動,同時點(diǎn)Q在線段CD上也以每秒1個單位的速度由D向C運(yùn)動,則經(jīng)過幾秒后,PQ=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷20(回瀾初中 潘曉華)(解析版) 題型:解答題

(2006•宿遷)如圖,拋物線y=-x2+x-2與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C.
(1)求證:△AOC∽△COB;
(2)過點(diǎn)C作CD∥x軸交拋物線于點(diǎn)D.若點(diǎn)P在線段AB上以每秒1個單位的速度由A向B運(yùn)動,同時點(diǎn)Q在線段CD上也以每秒1個單位的速度由D向C運(yùn)動,則經(jīng)過幾秒后,PQ=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省宿遷市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•宿遷)如圖,拋物線y=-x2+x-2與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C.
(1)求證:△AOC∽△COB;
(2)過點(diǎn)C作CD∥x軸交拋物線于點(diǎn)D.若點(diǎn)P在線段AB上以每秒1個單位的速度由A向B運(yùn)動,同時點(diǎn)Q在線段CD上也以每秒1個單位的速度由D向C運(yùn)動,則經(jīng)過幾秒后,PQ=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省廣州市天河區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2006•宿遷)如圖,在Rt△ABC中,∠C=90°,AC=3,AB=5.則cosB等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省宿遷市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•宿遷)如圖,矩形內(nèi)兩相鄰正方形的面積分別是2和6,那么矩形內(nèi)陰影部分的面積是    .(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案