精英家教網 > 初中數學 > 題目詳情
如圖,AB是⊙O的直徑,點D、T是圓上的兩點,且AT平分∠BAD,過點T作AD延長線的垂線PQ,垂足為C.若⊙O的半徑為2,TC=,則圖中陰影部分的面積是   
【答案】分析:連接OT、OD、過O作OM⊥AD于M,得到矩形OMCT,求出OM,求出∠OAM,求出∠AOT,求出OT∥AC,得出PC是圓的切線,得出等邊三角形AOD,求出∠AOD,求出∠DOT,求出∠DTC=∠CAT=30°,求出DC,求出梯形OTCD的面積和扇形OTD的面積.相減即可求出答案.
解答:解:連接OT、OD、DT,過O作OM⊥AD于M,
∵OA=OT,AT平分∠BAC,
∴∠OTA=∠OAT,∠BAT=∠CAT,
∴∠OTA=∠CAT,
∴OT∥AC,
∵PC⊥AC,
∴OT⊥PC,
∵OT為半徑,
∴PC是⊙O的切線,
∵OM⊥AC,AC⊥PC,OT⊥PC,
∴∠OMC=∠MCT=∠OTC=90°,
∴四邊形OMCT是矩形,
∴OM=TC=,
∵OA=2,
∴sin∠OAM=,
∴∠OAM=60°,
∴∠AOM=30°
∵AC∥OT,
∴∠AOT=180°-∠OAM=120°,
∵∠OAM=60°,OA=OD,
∴△OAD是等邊三角形,
∴∠AOD=60°,
∴∠TOD=120°-60°=60°,
∵PC切⊙O于T,
∴∠DTC=∠CAT=∠BAC=30°,
∴tan30°=,
∴DC=1,
∴陰影部分的面積是S梯形OTCD-S扇形OTD=×(2+1)×-=
故答案為:
點評:本題考查了切線的性質和判定,解直角三角形,矩形的性質和判定,勾股定理,扇形的面積,梯形的性質等知識點的應用,主要考查學生運用性質進行推理和計算的能力,本題綜合性比較強,有一定的難度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側面的一部分(如圖1),它的側面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網0.1平方米)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數學 來源:初中數學解題思路與方法 題型:047

已知如圖,AB是半圓直經,△ACD內接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案