【題目】已知:如圖,ABCD的對角線AC、BD相交于點O,∠BDC45°,過點BBHDCDC的延長線于點H,在DC上取DECH,延長BHF,使FHCH,連接DF、EF

1)若AB2,AD,求BH的值;

2)求證:ACEF

【答案】13;(2)見解析

【解析】

1)過點AANBDN,證出△ABN是等腰直角三角形,得出ANBNAB,DN2,得出BDBN+DN+23,證出△BDH是等腰直角三角形,即可得出BHDHBD3;

2)取DH的中點M,連接OM,證出OM是△BDH的中位線,得出OMBH,OMBHDHDM,設DEaCEb,則CHFHa,CDEHCE+CHa+b,BHDHDE+CE+CH2a+b,得出OMDM2a+b),CMCDDMb,在RtOMC中,由勾股定理得出OC22a+b2+b2AC2,得出AC2=(2a+b2+b24a2+4ab+2b222a2+2ab+b2),在RtEHF中,由勾股定理得出EF22a2+2ab+b2,得出AC22EF2,即可得出結論.

1)解:過點AANBDN,如圖1所示:

∵四邊形ABCD為平行四邊形,

ABCD

∴∠ABD=∠BDC45°,

ANBD,

∴△ABN是等腰直角三角形,

AB2,

ANBNABDN2,

BDBN+DN+23,

BHDC,

∴△BDH是等腰直角三角形,

BHDHBD×33

2)證明:取DH的中點M,連接OM,如圖2所示:

∵四邊形ABCD是平行四邊形,

OBOD

OM是△BDH的中位線,

OMBH,OMBHDHDM

DEa,CEb,則CHFHa,CDEHCE+CHa+bBHDHDE+CE+CH2a+b,

OMDM2a+b),

CMCDDMa+b2a+b)=b,

RtOMC中,由勾股定理得:OC2OM2+CM22a+b2+b2AC2,

AC2=(2a+b2+b24a2+4ab+2b222a2+2ab+b2),

RtEHF中,由勾股定理得:EF2EH2+FH2=(a+b2+a22a2+2ab+b2,

AC22EF2,

ACEF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線ymx22mx+n(m≠0)x軸交于點A,B,點A的坐標為(2,0)

(1)寫出拋物線的對稱軸;

(2)直線過點B,且與拋物線的另一個交點為C

①分別求直線和拋物線所對應的函數(shù)表達式;

②點P為拋物線對稱軸上的動點,過點P的兩條直線l1yx+al2y=﹣x+b組成圖形G.當圖形G與線段BC有公共點時,直接寫出點P的縱坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,ABAC2,∠BAC90°,點DAC的中點,點PBC邊上的動點,連接PA、PD.則PA+PD的最小值為(  )

A.B.C.D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:

商品名稱

進價(/)

40

90

售價(/)

60

120

設其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.

()寫出y關于x的函數(shù)關系式;

()該商場計劃最多投入8000元用于購買這兩種商品,

①至少要購進多少件甲商品?

②若銷售完這些商品,則商場可獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著電影《流浪地球》的熱映,科幻大神劉慈欣的著作受到廣大書迷的追捧,《流浪地球》《球狀閃電》《三體》《超新星紀元》四部小說在某網(wǎng)上書城熱銷.已知《流浪地球》的銷售單價與《球狀閃電》相同,《三體》的銷售單價是《超新星紀元》單價的3倍,《流浪地球》與《超新星紀元》的單價和大于40元且不超過50元;若自電影上映以來,《流浪地球》與《超新星紀元》的日銷售量相同,《球狀閃電》的日銷售量為《三體》日銷售量的3倍,《流浪地球》與《三體》的日銷售量和為450本,且《流浪地球》的日銷售量不低于《三體》的日銷量的且小于230本;《流浪地球》《三體》的日銷量額之和比《球狀閃電》《超新星紀元》的日銷售額之和多1575元.則當《流浪地球》《三體》這2部小說日銷額之和最多時,《流浪地球》的單價為_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中,△ABC的頂點都在網(wǎng)格線交點上.

1)圖中AC邊上的高為   個單位長度;

2)只用沒有刻度的直尺,在所給網(wǎng)格圖中按如下要求畫圖(保留必要痕跡):

以點C為位似中心,把ABC按相似比1:2縮小,得到DEC

AB為一邊,作矩形ABMN,使得它的面積恰好為ABC的面積的2倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(7分)校園手機現(xiàn)象越來越受到社會的關注,小記者劉紅隨機調查了某校若干學生和家長對中學生帶手機現(xiàn)象的看法,制作了如下的統(tǒng)計圖:

(1)求這次調查的總人數(shù),并補全圖1;

(2)求圖2中表示家長贊成的圓心角的度數(shù);

(3)針對隨機調查的情況,劉紅決定從初三一班表示贊成的4位家長中隨機選擇2位進行深入調查,其中包含小亮和小丁的家長,請你利用樹狀圖或列表的方法,求出小亮和小丁的家長被同時選中的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、45;三個連續(xù)的偶數(shù)中的勾股數(shù)68、10;事實上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).

(1)另外利用一些構成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達哥拉斯學派提出的公式:a2n+1,b2n2+2nc2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).

(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學著作《九章算術》中,書中提到:當a(m2n2),bmn,c(m2+n2)(m、n為正整數(shù),mn時,a、bc構成一組勾股數(shù);利用上述結論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n5,求該直角三角形另兩邊的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,的直徑,于點,過點的直線交于點,交的延長線于點

1)求證:的切線;

2)若,試求的長;

3)如圖2,點是弧的中點,連結,交于點,若,求的值.

查看答案和解析>>

同步練習冊答案