【題目】如圖,正方形ABCD中,E是BC上的一點(diǎn),連接AE,過(guò)B點(diǎn)作BH⊥AE,垂足為點(diǎn)H,延長(zhǎng)BH交CD于點(diǎn)F,連接AF.
(1)求證:AE=BF;
(2)若正方形邊長(zhǎng)為5,BE=2,求sin∠DAF的值.
【答案】(1)證明見(jiàn)解析;(2)sin∠DAF.
【解析】
(1)證明△ABE≌△BCF即可;
(2)由(1)可得CF=BE=2,則DF=3,利用勾股定理求出AF值,借助DF與AF之比可求sin∠DAF值.
(1)∵四邊形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF.
∵∠BAE+∠ABH=90°,∠FBC+∠ABH=90°,
∴∠BAE=∠FBC,
∴△ABE≌△BCF(ASA),
∴AE=BF.
(2)∵△ABE≌△BCF,
∴CF=BE=2,
∴DF=DC﹣FC=5﹣2=3.
在Rt△ADF中,利用勾股定理可得AF,∴sin∠DAF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=與x軸交于A、B兩點(diǎn),△ABC為等邊三角形,∠COD=60°,且OD=OC.
(1)A點(diǎn)坐標(biāo)為 ,B點(diǎn)坐標(biāo)為 ;
(2)求證:點(diǎn)D在拋物線(xiàn)上;
(3)點(diǎn)M在拋物線(xiàn)的對(duì)稱(chēng)軸上,點(diǎn)N在拋物線(xiàn)上,若以M、N、O、D為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、P、B、C是⊙O上四點(diǎn),∠APC=∠CPB=60°.
(1)求證:△ABC是等邊三角形;
(2)連接OA,OB,當(dāng)點(diǎn)P位于什么位置時(shí),四邊形PBOA是菱形?并說(shuō)明理由;
(3)已知PA=a,PB=b,求PC的長(zhǎng)(用含a和b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=(m﹣2)x2+2mx+m﹣3的圖象與x軸有兩個(gè)交點(diǎn),(x1,0),(x2,0),則下列說(shuō)法正確是( )
①該函數(shù)圖象一定過(guò)定點(diǎn)(﹣1,﹣5);
②若該函數(shù)圖象開(kāi)口向下,則m的取值范圍為:m<2;
③當(dāng)m>2,且1≤x≤2時(shí),y的最大值為:4m﹣5;
④當(dāng)m>2,且該函數(shù)圖象與x軸兩交點(diǎn)的橫坐標(biāo)x1,x2滿(mǎn)足﹣3<x1<﹣2,﹣1<x2<0時(shí),m的取值范圍為:m<11.
A.①②③④B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無(wú)人機(jī)距地面高度CD為米,點(diǎn)A、D、E在同一水平直線(xiàn)上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明家在A處,門(mén)前有一口池塘,隔著池塘有一條公路l,AB是A到l的小路.現(xiàn)新修一條路AC到公路l.小明測(cè)量出∠ACD=31°,∠ABD=45°,BC=50m.請(qǐng)你幫小明計(jì)算他家到公路l的距離AD的長(zhǎng)度?(精確到0.1m;參考數(shù)據(jù) tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系內(nèi),正方形如圖擺放,已知頂點(diǎn) A(a,0),B(0,b) ,則頂點(diǎn)C的坐標(biāo)為( )
A.(-b,a b)B.(-b,b - a)C.(-a,b - a)D.(b,b -a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,關(guān)于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣ax(a>0).
(1)試說(shuō)明點(diǎn)C在一次函數(shù)的圖象上;
(2)若兩個(gè)點(diǎn)(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿(mǎn)足?如果存在,請(qǐng)求出k的值;如果不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)E是二次函數(shù)圖象上一動(dòng)點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過(guò)點(diǎn)E作y軸的平行線(xiàn),與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0<a≤2時(shí),求線(xiàn)段EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年在法國(guó)舉辦的女足世界杯,為人們奉獻(xiàn)了一場(chǎng)足球盛宴.某商場(chǎng)銷(xiāo)售一批足球文化衫,已知該文化衫的進(jìn)價(jià)為每件40元,當(dāng)售價(jià)為每件60元時(shí),每個(gè)月可售出100件.根據(jù)市場(chǎng)行情,現(xiàn)決定漲價(jià)銷(xiāo)售,調(diào)査表明,每件商品的售價(jià)每上漲1元,每個(gè)月會(huì)少售出2件,設(shè)每件商品的售價(jià)為元,每個(gè)月的銷(xiāo)量為件.
(1)求與之間的函數(shù)關(guān)系式;
(2)當(dāng)每件商品的售價(jià)定為多少元時(shí),每個(gè)月獲得利潤(rùn)最大?最大月利潤(rùn)為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com