如圖(1),在平面直角坐標系中,點A的坐標為(1,-2),點B的坐標為(3,-1),二次函數(shù)y=-x2的圖象為l1
精英家教網(wǎng)
(1)沿y軸向下平移拋物線l1,使平移后的拋物線過點A,寫出平移后的拋物線的解析式;
(2)平移拋物線l1,使平移后的拋物線過A、B兩點,記拋物線為l2,如圖(2),求拋物線l2的函數(shù)解析式及頂點C的坐標;
(3)拋物線l2上是否存在點Q,使△QAB為等腰三角形?若存在,請在圖(2)中畫出來,并簡要說明畫法;若不存在,請說明理由.
分析:(1)先設(shè)出拋物線l1的解析式(“上加下減”),然后將A點坐標代入拋物線l1的解析式中,即可求出平移的距離,從而確定拋物線l1的解析式.
(2)先根據(jù)拋物線l1的解析式和“左加右減”的平移規(guī)律設(shè)出拋物線l2的解析式,然后將A、B兩點坐標代入求解即可得到拋物線12的解析式,然后將其化為頂點坐標式,進而可求得C點坐標.
(3)此題應(yīng)分三種情況:
①AB=BQ,那么以B為圓心,BA為半徑作圓,此圓與拋物線的交點即為所求的Q點;
②AB=AQ,同①,可以A為圓心,BA為半徑作圓,此圓與拋物線的交點即為所求的另一個Q點;
③AQ=BQ,此時Q點為線段AB的垂直平分線與拋物線的交點.
解答:解:(1)設(shè)拋物線l1的解析式為:y=-x2-h,精英家教網(wǎng)
由題意知:-1-h=-2,h=1;
∴拋物線l1:y=-x2-1.

(2)設(shè)l2的解析式為y=-x2+bx+c,
聯(lián)立方程組,
-2=-1+b+c
-1=-9+3b+c

解得b=
9
2
,c=-
11
2
,
則,l2的解析式為y=-x2+
9
2
x-
11
2

點C的坐標為(
9
4
,-
7
16
).

(3)若AB為等腰三角形的腰,則分別以A、B為圓心,以AB長為半徑畫圓,交拋物線分別于Q1,Q2
若AB為等腰三角形的底邊,則作AB的垂直平分線,交拋物線分別于Q3,Q4,則Q1、Q2、Q3、Q4為所求的可能的位置.
點評:此題主要考查了二次函數(shù)圖象的平移以及解析式的確定,并熟練掌握等腰三角形的構(gòu)成情況,需要識記的是二次函數(shù)圖象的平移規(guī)律,即:“上加下減、左加右減”.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

暑假期間,北關(guān)中學對網(wǎng)球場進行了翻修,在水平地面點A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線路是一條拋物線(如圖所示),在地面上落點為B.有同學在直線AB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球精英家教網(wǎng)的體積和圓柱形桶的厚度忽略不計),以M點為頂點,拋物線對稱軸為y軸,水平地面為x軸建立平面直角坐標系.
(1)請求出拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,網(wǎng)球能不能落入桶內(nèi)?
(3)當豎直擺放圓柱形桶多少個時,網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•武漢模擬)要修建一個圓形噴水池,在池中心豎直安裝一根2.25m的水管,在水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達到最高,高度為3m.
(1)建立適當?shù)钠矫嬷苯亲鴺讼,使水管頂端的坐標為?,2.25),水柱的最高點的坐標為(1,3),求出此坐標系中拋物形水柱對應(yīng)的函數(shù)關(guān)系式(不要求寫取值范圍);
(2)如圖,在水池底面上有一些同心圓軌道,每條軌道上安裝排水地漏,相鄰軌道之間的寬度為0.3m,最內(nèi)軌道的半徑為rm,其上每0.3m的弧長上安裝一個地漏,其它軌道上的個數(shù)相同,水柱落地處為最外軌道,其上不安裝地漏.求當r為多少時池中安裝的地漏的個數(shù)最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一個多面體的面數(shù)(a)和這個多面體表面展開后得到的平面圖形的頂點數(shù)(b),棱數(shù)(c)之間存在一定規(guī)律,如圖1是正三棱柱的表面展開圖,它原有5個面,展開后有10個頂點(重合的頂點只算一個),14條棱.

【探索發(fā)現(xiàn)】
(1)請在圖2中用實線畫出立方體的一種表面展開圖;
(2)請根據(jù)圖2你所畫的圖和圖3的四棱錐表面展開圖填寫下表:
多面體 面數(shù)a 展開圖的頂點數(shù)b 展開圖的棱數(shù)c
直三棱柱 5 10 14
四棱錐
5
5
8 12
立方體
6
6
14
14
19
19
(3)發(fā)現(xiàn):多面體的面數(shù)(a)、表面展開圖的頂點數(shù)(b)、棱數(shù)(c)之間存在的關(guān)系式是
a+b-c=1
a+b-c=1
;
【解決問題】
(4)已知一個多面體表面展開圖有17條棱,且展開圖的頂點數(shù)比原多面體的面數(shù)多2,則這個多面體的面數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:學習周報 數(shù)學 華師大八年級版 2009-2010學年 第13期 總第169期 華師大版 題型:044

工具閱讀:

在平面上畫兩條原點重合、互相垂直且具有相同單位長度的數(shù)軸(如圖),這就建立了平面直角坐標系.通常把其中水平的一條數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩數(shù)軸的交點O叫做坐標原點.

問題探究:如圖1,在6×6的方格紙中,給出如下三種變換:P變換,Q變換,R變換.

將圖形F沿x軸向右平移1格得圖形F1,稱為作1次P變換;

將圖形F沿y軸翻折得圖形F2,稱為作1次Q變換;

將圖形F繞坐標原點順時針旋轉(zhuǎn)90°得圖形F3,稱為作1次R變換.

規(guī)定:PQ變換表示先作1次Q變換,再作1次P變換;QP變換表示先作1次P變換,再作1次Q變換;Rn變換表示作n次R變換.

解答下列問題:

(1)作R4變換相當于至少作________次Q變換;

(2)請在圖2中畫出圖形F作R2011變換后得到的圖形F4;

(3)PQ變換與QP變換是否是相同的變換?請在圖3中畫出PQ變換后得到的圖形F5,在圖4中畫出QP變換后得到的圖形F6

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年重慶市南開中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:解答題

暑假期間,北關(guān)中學對網(wǎng)球場進行了翻修,在水平地面點A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線路是一條拋物線(如圖所示),在地面上落點為B.有同學在直線AB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球的體積和圓柱形桶的厚度忽略不計),以M點為頂點,拋物線對稱軸為y軸,水平地面為x軸建立平面直角坐標系.
(1)請求出拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,網(wǎng)球能不能落入桶內(nèi)?
(3)當豎直擺放圓柱形桶多少個時,網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

同步練習冊答案