【題目】如圖,的圖像交x軸于O點和A點,將此拋物線繞原點旋轉(zhuǎn)180°得圖像y2,y2x軸交于O點和B點.

(1)若,則y2=_____________________

(2)設(shè)的頂點為C,則當△ABC為直角三角形時,請你任寫一個符合此條件的的表達式_________________

【答案】 (滿足△AOC為等邊三角形即可)

【解析】

(1)∵的圖象關(guān)于原點對稱,

的二次項系數(shù)互為相反數(shù),頂點的兩個坐標也分別互為相反數(shù),

又∵

;

(2)如圖,連接OC,∵的圖像和軸交于點A和原點,頂點為C點,

∴ A、C,且OC=AC,

∵ △ABC是直角三角形,且點AB關(guān)于原點對稱

∴ OC==OA=AC,

∴△OAC是等邊三角形,

由等邊三角形邊上的高等于邊長的倍可得,解得,

,△ABC為直角三角形,

∴符合條件的的表達式可為.(符合條件的解析式有很多個).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店老板到廠家選購兩種品牌的羽絨服,品牌羽絨服每件進價比品牌羽絨服每件進價多元,若用元購進種羽絨服的數(shù)量是用元購進種羽絨服數(shù)量的.

1)求、兩種品牌羽絨服每件進價分別為多少元?

2)若品牌羽絨服每件售價為元,品牌羽絨服每件售價為元,服裝店老板決定一次性購進、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤不低于元,則最少購進品牌羽絨服多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點在反比例函數(shù)的圖象上,過點軸,垂足為,直線經(jīng)過點,與軸交于點,且,.

(1)求反比例函數(shù)和一次函數(shù)的表達式;

(2)直接寫出關(guān)于的不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系 xOy 中,拋物線 y=ax2﹣4ax+3a﹣2(a≠0)與 x軸交于 A,B 兩(點 A 在點 B 左側(cè)).

(1)當拋物線過原點時,求實數(shù) a 的值;

(2)①求拋物線的對稱軸;

②求拋物線的頂點的縱坐標(用含 a 的代數(shù)式表示);

(3)當 AB≤4 時,求實數(shù) a 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2 x+ca≠0)的圖象與x軸交于AB兩點,與y軸交于點C0,﹣2),已知B點坐標為(4,0).

1)求拋物線的解析式;

2)若點M是線段BC下方的拋物線上一點,記點M到線段BC的距離為d,當d取最大值時,求出此時M點的坐標;

3)若點P是拋物線上一點,點E是直線y=x上的動點,是否存在點P、E,使以點A,點B,點P,點E為頂點的四邊形是平行四邊形?若存在,請直接寫出點E坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的分式方程有負分數(shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB2BCm,點E是邊BC上一點,BE1,連接AE,沿AE翻折△ABE使點B落在點F處.

1)連接CF,若CFAE,求m的值;

2)連接DF,若DF,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是我市某大樓的高,在地面上點處測得樓頂的仰角為,沿方向前進米到達點,測得.現(xiàn)打算從大樓頂端點懸掛一幅慶祝建國周年的大型標語,若標語底端距地面,請你計算標語的長度應(yīng)為多少?

查看答案和解析>>

同步練習(xí)冊答案