點E為正方形ABCD的BC邊的中點,動點F在對角線AC上運動,連接BF、EF.設AF=x,△BEF的周長為y,那么能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.
【答案】分析:先根據(jù)正方形的對稱性找到y(tǒng)的最小值,可知圖象有最低點,再根據(jù)距離最低點x的值的大小(AM>MC)可判斷正確的圖形.
解答:解:如圖,連接DE與AC交于點M.則當點F運動到點M處時,三角形△BEF的周長y最小,且AM>MC.

通過分析動點F的運動軌跡可知,y是x的二次函數(shù)且有最低點,利用排除法可知圖象大致為:

故選B.
點評:本題考查了動點問題的函數(shù)圖象.解決有關(guān)動點問題的函數(shù)圖象類習題時,關(guān)鍵是要根據(jù)條件找到所給的兩個變量之間的變化關(guān)系,尤其是在幾何問題中,更要注意基本性質(zhì)的掌握和靈活運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點O為正方形ABCD的中心,BE平分∠DBC交DC于點E,延長BC到點F,使FC=EC,連接DF交BE的延長線于點H,連接OH交DC于點G,連接HC.則以下四個結(jié)論中正確結(jié)論的個數(shù)為( 。
①OH∥BF;②∠CHF=45°;③GH=
1
4
BC;④FH2=HE•HB.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、如圖,⊙O1的半徑為1,正方形ABCD的邊長為6,點O2為正方形ABCD的中心,O1O2垂直AB于P點,O1O2=8.若將⊙O1繞點P按順時針方向旋轉(zhuǎn)360°,在旋轉(zhuǎn)過程中,⊙O1與正方形ABCD的邊只有一個公共點的情況一共出現(xiàn)(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,已知點E為正方形ABCD的邊BC上一點,連接AE,過點D作DG⊥AE,垂足為G,延長DG交AB于點F.
求證:AF=BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•惠城區(qū)模擬)如圖,點E為正方形ABCD的邊CD上一點.
(1)在AB的下方,作射線AF交CB延長線于點F,使∠BAF=∠DAE.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明);
(2)在(1)的條件下,求證:△DAE≌△BAF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點E為正方形ABCD的邊CD上一點,AB=10,AE=4.△DAE旋轉(zhuǎn)后能與△DCF重合.
(1)旋轉(zhuǎn)中心是點
D
D
,旋轉(zhuǎn)了
90
90
度.
(2)連接EF,則△DEF是
等腰直角
等腰直角
三角形.
(3)四邊形DEBF的周長和面積分別是
20+4
29
20+4
29
100
100

查看答案和解析>>

同步練習冊答案