【題目】如圖1,P(2,2),點A在x軸正半軸上運動,點B在y軸上運動,且PA=PB.
(1)求證:PA⊥PB;
(2)若點A(8,0),求點B的坐標(biāo);
(3)求OA – OB的值;
(4)如圖2,若點B在y軸正半軸上運動時,直接寫出OA+OB的值.
【答案】(1)詳見解析;(2)點B的坐標(biāo)為(0,-4);(3)4;(4)4.
【解析】
試題分析:(1)過點P作PE⊥x軸于E,作PF⊥y軸于F,根據(jù)點P的坐標(biāo)可得PE=PF=2,然后利用“HL”證明Rt△APE和Rt△BPF全等,根據(jù)全等三角形對應(yīng)角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根據(jù)垂直的定義證明;(2)求出AE的長度,再根據(jù)全等三角形對應(yīng)邊相等可得AE=BF,然后求出OB,再寫出點B的坐標(biāo)即可;(3)根據(jù)全等三角形對應(yīng)邊相等可得PE=PF,再表示出PE、PF,然后列出方程整理即可得解;(4)同(3)的思路求解即可.
試題解析:(1)如圖1,過點P作PE⊥x軸于E,作PF⊥y軸于F
∵ P(2,2)
∴ PE=PF=2,∠EPF=90°
在Rt△APE和Rt△BPF中
∴ Rt△APE≌Rt△BPF(HL)
∴ ∠APE=∠BPF
∴ ∠APB=∠APE+∠BPE=∠BPF+∠BPE=90°
∴ PA⊥PB
(2)∵P(2,2)
∴ OE=OF=2
∵ A(8,0)
∴ OA=8
∴ AE=OA-OE=8-2=6
又由⑴得Rt△APE≌Rt△BPF
∴ BF=AE=6
∴ OB=BF-OF=6-2=4
∴ 點B的坐標(biāo)為(0,-4)
(3)∵ Rt△APE≌Rt△BPF
∴ AE=BF
∵ AE=OA-OE=OA-2
BF=OF+OB= 2 +OB
∴ OA-2= 2 +OB
∴ OA -OB= 4
(4)OA +OB=4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《楊輝算法》中有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多了多少步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個三角形的兩個內(nèi)角和小于第三個內(nèi)角,這個三角形是( 。┤切危
A. 銳角 B. 鈍角 C. 直角 D. 等腰
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度數(shù);(2)若∠ACB為α,則∠ECD的度數(shù)能否用含α的式子來表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用作位似圖形的辦法,可以將一個圖形放大或縮小,位似中心位置可選在( )
A. 原圖形的外部B. 原圖形的內(nèi)部C. 原圖形的邊上D. 任意位置
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,AD⊥BC于點D,點E為AC中點且BE平分∠ABD,連接BE交AD于點F,且BF=AC,過點D作DG∥AB,交AC于點G.
求證:
(1)∠BAD=2∠DAC
(2)EF=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會準(zhǔn)備調(diào)查七年級敘述參加“繪畫類”、“書法類”、“樂器類”四類校本課程的人數(shù),在全校進行隨機抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了如圖兩幅統(tǒng)計圖(信息尚不完整),請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中樂器部分的圓心角的度數(shù);
(3)如果該校共有1000名學(xué)生參加這4個課外興趣小組,而每個教師最多只能輔導(dǎo)本組的25名學(xué)生,估計書法興趣小組至少需要準(zhǔn)備多少名教師?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com