(2006•河池)如圖,已知AB為⊙O的直徑,⊙O1以OA為直徑,⊙O的弦AD交⊙O1于點C,BC⊥OD于點E.
(1)求證:BC為⊙O1的切線;
(2)若OE=2,求⊙O的半徑及AC的長.

【答案】分析:(1)連接01C,OC,可證得O1C是△AOD的中位線,利用平行可求得01C⊥BC那么BC為⊙O1的切線;
(2)可利用已知得出△ACO∽△CEO,進而得出=,進而求得CO,利用勾股定理求得AC的長.
解答:(1)證明:連接01C,OC;
∵AO是⊙O1的直徑,
∴∠ACO=90°,
即OC⊥AD,
∴AC=CD,
∵AO1=OO1,
∴O1C是△AOD的中位線,
∴O1C∥OD.
∵BC⊥OD,
∴O1C⊥BC,
∴BC為⊙O1的切線.

(2)解:∵OE∥01C,
==
∴01C=3,
∴AO=201C=6.
∵BC為⊙O1的切線,
∴∠BCO=∠A,
∵∠OEC=∠ACO,
∴△ACO∽△CEO,
=,
=,
解得:CO=2
∴AC==2
點評:證明是圓的切線應連接圓心和切點,利用平行證得證半徑和直線所夾的角是90;注意使用勾股定理來推理所求線段的長度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•河池)如圖,在平面直角坐標系中,直線y=-x+6交x軸于點A,交y軸于點B.點P,點Q同時從原點出發(fā)作勻速運動,點P沿x軸正方向運動,點Q沿OB→BA方向運動,并同時到達點A.點P運動的速度為1厘米/秒.
(1)求點Q運動的速度;
(2)當點Q運動到線段BA上時,設點P運動的時間為x(秒),△POQ的面積為y(平方厘米),那么用x的代數(shù)式表示AQ=______,并求y與x的函數(shù)關系式;
(3)若將(2)中所得函數(shù)的自變量x的取值范圍擴大到任意實數(shù)后,其函數(shù)圖象上是否存在點M,使得點M與該函數(shù)圖象和x軸的兩個交點所組成的三角形面積等于△AOB的面積?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省寧波市北侖區(qū)中考數(shù)學二模試卷(解析版) 題型:選擇題

(2006•河池)如圖,沿AE折疊矩形紙片ABCD,使點D落在BC邊的點F處已知AB=8,BC=10,則tan∠EFC的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西河池市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•河池)如圖,在平面直角坐標系中,直線y=-x+6交x軸于點A,交y軸于點B.點P,點Q同時從原點出發(fā)作勻速運動,點P沿x軸正方向運動,點Q沿OB→BA方向運動,并同時到達點A.點P運動的速度為1厘米/秒.
(1)求點Q運動的速度;
(2)當點Q運動到線段BA上時,設點P運動的時間為x(秒),△POQ的面積為y(平方厘米),那么用x的代數(shù)式表示AQ=______,并求y與x的函數(shù)關系式;
(3)若將(2)中所得函數(shù)的自變量x的取值范圍擴大到任意實數(shù)后,其函數(shù)圖象上是否存在點M,使得點M與該函數(shù)圖象和x軸的兩個交點所組成的三角形面積等于△AOB的面積?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西河池市中考數(shù)學試卷(大綱卷)(解析版) 題型:選擇題

(2006•河池)如圖,沿AE折疊矩形紙片ABCD,使點D落在BC邊的點F處已知AB=8,BC=10,則tan∠EFC的值為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案