【題目】如圖,已知直線的函數(shù)表達(dá)式為,與軸交點(diǎn)為,與軸交點(diǎn)為.
(1)求兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),是否存在點(diǎn),使的值最?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1),;(2)存在,的最小值為.
【解析】
(1)在一次函數(shù)中,分別令和,解相應(yīng)方程,可求得A、B兩點(diǎn)的坐標(biāo);
(2)由垂線段最短可知當(dāng)時(shí),OP最小,利用面積法求出OP長(zhǎng)即可.
解:(1)一次函數(shù),
令,則,
令,則,
點(diǎn)A坐標(biāo)為,點(diǎn)B坐標(biāo)為;
(2)存在點(diǎn)P使得OP的值最小,理由如下:
點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),
當(dāng)OP最小時(shí)滿足,此時(shí)OP即為中AB邊上的高,取得最小值,
點(diǎn)A坐標(biāo)為,點(diǎn)B坐標(biāo)為,
,,
由勾股定理得:,
的面積,
,
存在點(diǎn)P使OP的值最小,此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,△ABC的頂點(diǎn)都在格點(diǎn)上,點(diǎn)C坐標(biāo)(0,-1).
作出△ABC 關(guān)于原點(diǎn)對(duì)稱的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo);
把△ABC 繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,得△A2B2C2,畫(huà)出△A2B2C2,并寫(xiě)出點(diǎn)A2的坐標(biāo);
(3)直接寫(xiě)出△A2B2C2的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解我縣中學(xué)生參加“科普知識(shí)”競(jìng)賽成績(jī)的情況,隨機(jī)抽查了部分參賽學(xué)生的成績(jī),整理并制作出如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,如圖所示.請(qǐng)根據(jù)圖表信息解答下列問(wèn)題.
組別 | 分?jǐn)?shù)段(分) | 頻數(shù) | 百分率(%) |
A組 | 60≤x<70 | 30 | 10 |
B組 | 70≤x<80 | 90 | n |
C組 | 80≤x<90 | m | 40 |
D組 | 90≤x<100 | 60 | 20 |
(1)樣本容量a= ,表中m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>80分以上(包括80分)為“優(yōu)”等,請(qǐng)你估計(jì)我縣參加“科普知識(shí)”競(jìng)賽的1.5萬(wàn)名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察后填空:①(x﹣1)(x+1)=x2﹣1; ②(x﹣1)(x2+x+1)=x3﹣1; ③(x﹣1)(x3+x2+x+1)=x4﹣1.
(1)填空:(x﹣1)(x99+x98+x97+…+x+1)= .
(2)請(qǐng)利用上面的結(jié)論計(jì)算:
①(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1; ②若x3+x2+x+1=0,求x2016的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)學(xué)習(xí)過(guò)程中,通常是利用已有的知識(shí)與經(jīng)驗(yàn),通過(guò)對(duì)研究對(duì)象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對(duì)象的本質(zhì)特征.比如在學(xué)習(xí)“同底數(shù)冪的乘法法則”過(guò)程中,利用有理數(shù)的乘方概念和乘法結(jié)合律,可由“特殊”抽象概括出“一般”,具體如下22×23=25,23×24=27,22×26=28…→2m2n=2m+n…→aman=am+n(m、n都是正整數(shù))我們亦知: , , , …
(1)請(qǐng)你根據(jù)上面的材料,用字母a、b、c歸納出a、b、c(a>b>0,c>0)之間的一個(gè)數(shù)學(xué)關(guān)系式.
(2)請(qǐng)嘗試說(shuō)明(1)中關(guān)系式的正確性.
(3)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個(gè)現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,折疊正方形ABCD,使AB邊落在AC上,點(diǎn)B落在點(diǎn)H處,折痕AE分別交BC于點(diǎn)E,交BO于點(diǎn)F,連結(jié)FH,則下列結(jié)論(1)AD=DF;(2)=;(3)=﹣1;(4)四邊形BEHF為菱形.正確的有幾個(gè)( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有A、B兩個(gè)轉(zhuǎn)盤,其中轉(zhuǎn)盤A被分成4等份,轉(zhuǎn)盤B被分成3等份,并在每一份內(nèi)標(biāo)上數(shù)字.現(xiàn)甲、乙兩人同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線上時(shí)視為無(wú)效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記為x,B轉(zhuǎn)盤指針指向的數(shù)字記為y,從而確定點(diǎn)P的坐標(biāo)為P(x,y).
(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法寫(xiě)出所有可能得到的點(diǎn)P的坐標(biāo);
(2)計(jì)算點(diǎn)P在函數(shù)y=圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,拋物線y=ax2﹣10ax+c經(jīng)過(guò)點(diǎn)C,頂點(diǎn)M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點(diǎn)D的坐標(biāo);
(2)求拋物線的對(duì)稱軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點(diǎn)P,使得△PBD與△PCD的面積相等?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,設(shè)銳角∠AOB=α,將△DOC按逆時(shí)針?lè)较蛐D(zhuǎn)得到△D′OC′(0°<旋轉(zhuǎn)角<90°)連接AC′、BD′,AC′與BD′相交于點(diǎn)M.
(1)、當(dāng)四邊形ABCD為矩形時(shí),如圖1.求證:△AOC′≌△BOD′.
(2)、當(dāng)四邊形ABCD為平行四邊形時(shí),設(shè)AC=kBD,如圖2.
①猜想此時(shí)△AOC′與△BOD′有何關(guān)系,證明你的猜想;
②探究AC′與BD′的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并給予證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com