【題目】點(diǎn)P(m3m1)x軸上,則點(diǎn)P的坐標(biāo)為( )

A. (0,-2) B. (2,0) C. (4,0) D. (0,-4)

【答案】C

【解析】

根據(jù)x軸上點(diǎn)的縱坐標(biāo)為0列方程求出m的值,再求出橫坐標(biāo)即可得解.

解:∵點(diǎn)P(m+3,m-1)在x軸上,
m-1=0,
解得m=1,
m+3=1+3=4,
∴點(diǎn)P的坐標(biāo)為(4,0).
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線DE交AB于點(diǎn)E,交BC于點(diǎn)D,CD=3,則BC的長(zhǎng)為(
A.6
B.6
C.9
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市今年約5000名初三學(xué)生參加數(shù)學(xué)中考,從中抽取300名考生的數(shù)學(xué)成績(jī)進(jìn)行分析,則在該調(diào)查中,樣本指的是 (   )

A. 300 B. 300 C. 5000名考生的數(shù)學(xué)成績(jī) D. 300名考生的數(shù)學(xué)成績(jī)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠BAC=100°,DF,EG分別是AB,AC的垂直平分線,則∠DAE等于( )

A.50°
B.45°
C.30°
D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上與原點(diǎn)之間的距離小于5的所有整數(shù)的相加之和是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四位選手各10次射擊的平均成績(jī)都是9.2環(huán),其中甲的成績(jī)的方差為0.015, 乙的成績(jī)的方差為0.035,的成績(jī)的方差為0.025,的成績(jī)的方差為0.027,由此可知

A)甲的成績(jī)最穩(wěn)定 (B)乙的成績(jī)最穩(wěn)定

C)丙的成績(jī)最穩(wěn)定 (D)丁的成績(jī)最穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次方程x24x+20兩根為x1x2,則x1x2=( 。

A.4B.4C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】理數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過(guò)思考、討論、交流,得到以下思路:思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長(zhǎng)CB至點(diǎn)D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===

思路二 利用科普書(shū)上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===

思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…

思路四

請(qǐng)解決下列問(wèn)題(上述思路僅供參考).

(1)類(lèi)比:求出tan75°的值;

(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點(diǎn)A,測(cè)得A,C兩點(diǎn)間距離為60米,從A測(cè)得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;

(3)拓展:如圖3,直線與雙曲線交于A,B兩點(diǎn),與y軸交于點(diǎn)C,將直線AB繞點(diǎn)C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案