【題目】如圖,在△ABC中,AB = AC = 2,∠B =∠C = 50°,點(diǎn)D在線段BC上運(yùn)動(dòng)(點(diǎn)D不與B、C重合),連結(jié)AD,作∠ADE = 50°,DE交線段AC于點(diǎn)E.
(1)若DC = 2,求證:△ABD≌△DCE;
(2)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出∠BDA的度數(shù);若不可以,請(qǐng)說(shuō)明理由.
【答案】(1)證明見解析;(2)可以,見解析.
【解析】試題分析:(1)利用公共角求得∠ADB=∠DEC, DC=AB, ∠B =∠C,所以利用AAS,證明△ABD≌△DCE.
(2)可以令△ADE是等腰三角形,需要分類討論:(1)中是一種類型,EA=ED也是一種類型,可分別求出∠BDA度數(shù).
(2)
試題解析:
(1)證明:∵ AB = AC = 2,DC = 2,
∴ AB = DC ,
∵ ∠B =∠C = 50°,∠ADE = 50°,
∴ ∠BDA +∠CDE = 130°,
∠CED +∠CDE = 130°,
∴ ∠BDA =∠CED,
∴ △ABD≌△DCE(AAS).
(2)解:可以.有以下三種可能:
①由(1)得:△ABD≌△DCE,得AD = DE.
則有∠DAE =∠DEA = 65°
∴ ∠BDA =∠CED = 65° + 50° = 115°;
②由(1)得∠BDA =∠CED,
∵ 點(diǎn)D在線段BC上運(yùn)動(dòng)(點(diǎn)D不與B、C重合)
∴;
③當(dāng)EA = ED時(shí),∠EAD =∠ADE = 50°,
∴ ∠BDA =∠CED = 50° + 50° = 100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果(anbmb)3=a9b15,那么( )
A. m=4,n=3 B. m=4,n=4 C. m=3,n=4 D. m=3,n=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式.(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元,那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A(2,3),B(4,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫整點(diǎn)三角形.
(1)在圖1中畫一個(gè)△PAB,使點(diǎn)P的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);
(2)在圖2中畫一個(gè)△PAB,使點(diǎn)P,B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,-4),且與正比例函數(shù)的圖象相交于點(diǎn)(4,a),求:
(1)a的值;
(2)k、b的值;
(3)求出這兩個(gè)函數(shù)的圖象與y軸相交得到的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”,以下關(guān)于倍根方程的說(shuō)法,正確的是
________________ (寫出所有正確說(shuō)法的序號(hào))
①方程x2-x-2=0是倍根方程.
②若(x-2)(mx+n)=0是倍根方程,則4m2+5mn+n2=0;
③若點(diǎn)(p,q)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程px2+3x+q=0是倍根方程;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com