精英家教網(wǎng)如圖,點F是△ABC外接圓
BC
的中點,點D、E在邊AC上,使得AD=AB,BE=EC.證明:B、E、D、F四點共圓.
分析:連接FC、FB、BD和EF,根據(jù)四點共圓的判定定理可知,只需證明∠ADB=∠BFE即可.
解答:精英家教網(wǎng)證明:連接FC,F(xiàn)B,則FC=FB.…(2分)
連接EF,則△CEF≌△BEF,
∴∠BFE=∠CFE.…(5分)
∵A,B,F(xiàn),C共圓,
∴∠CAB+∠CFB=180°…(7分)
∴∠CAB+2∠BFE=180°.
∵AB=AD,
∴∠ABD=∠ADB…(8分)
∴∠CAB+2∠ADB=180°.
∴∠ADB=∠BFE.…(10分)
∴B、E、D、F四點共圓.…(12分)
點評:本題考查四點共圓的知識,有一定難度,解題關鍵是熟練掌握四點共圓的判定定理,然后尋找條件證明∠ADB=∠BFE即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、如圖,點P是△ABC內的一點,有下列結論:①∠BPC>∠A;②∠BPC一定是鈍角;③∠BPC=∠A+∠ABP+∠ACP.其中正確的結論共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點O是△ABC內任意一點,G、D、E分別為AC、OA、OB的中點,F(xiàn)為BC上一動點,問四邊形GDEF能否為平行四邊形?若可以,指出F點位置,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•攀枝花模擬)如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5,GC=4,GB=3,將△ADG繞點D順時針方向旋轉180°得到△BDE,則△EBC的面積=
12
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•天津)如圖,點I是△ABC的內心,AI交BC邊于D,交△ABC的外接圓于點E.
求證:(1)IE=BE;
      (2)IE是AE和DE的比例中項.

查看答案和解析>>

同步練習冊答案