【題目】如圖甲,在平面直角坐標系中,直線分別交x軸、y軸于點A、B,⊙O的半徑為2 個單位長度,點P為直線y=﹣x+8上的動點,過點P作⊙O的切線PC、PD,切點分別為C、D,且PC⊥PD.
(1)試說明四邊形OCPD的形狀(要有證明過程);
(2)求點P的坐標
(3)若直線y=﹣x+8沿x軸向左平移得到一條新的直線y1=﹣x+b,此直線將⊙O的圓周分得兩段弧長之比為1:3,請直接寫出b的值;
(4)若將⊙O沿x軸向右平移(圓心O始終保持在x軸上),試寫出當⊙O與直線y=﹣x+8有交點時圓心O的橫坐標m的取值范圍.(直接寫出答案)
【答案】
(1)解:四邊形OCPD為正方形.理由如下:
連接OC、OD,如圖甲,
∵PC和PD為切線,
∴OC⊥PC,PD⊥PD,
而PC⊥PD,
∴∠OCP=∠ODP=∠CPD=90°,
∴四邊形OCPD為矩形,
而OC=OD,
∴四邊形OCPD為正方形.
(2)解:作PF⊥x軸于F,如圖甲,
∵四邊形OCPD為正方形,
∴OP= OD= 2 =2 ,
設P(t,﹣t+8),
∴t2+(﹣t+8)2=(2 )2,解得t1=2,t2=6,
∴P點坐標為(2,6)或(6,2)
(3)解:如圖乙,
∵直線y1=﹣x+b將⊙O的圓周分得兩段弧長之比為1:3,
即直線y1=﹣x+b將⊙O的圓周分得的劣弧為圓周的 ,
∵直線y1=﹣x+b與坐標軸的夾角為45°,
∴直線y1=kx+b與坐標的交點A和點B為⊙O與坐標的交點,
當點A和點B都在坐標軸的正半軸上時,b=2 ;當點A和點B都在坐標軸的負半軸上時,b=﹣2 ,
即b的值為±2
(4)解:當x=0時,y=﹣x+8=8,則A(0,8),
當y=0時,﹣x+8=0,解得x=8,則B(8,0),
∴OA=OB,
∴△OAB為等腰直角三角形,
∴∠ABO =45°,
當圓移動到點O′時與直線AB相切,作O′M⊥AB,如圖丙,則O′M=2 ,
∵∠MBO′=45°,
∴△O′BM為等腰直角三角形,
∴BO′= O′B=2 ,
∴OO′=8﹣2 ,
∴點O′的坐標為(8﹣2 ,0),
當圓移動到點O″時與直線AB相切,作O″N⊥AB,如圖丙,同理可得B O″=2 ,
∴OO′=8+2 ,
∴點O″的坐標為(8+2 ,0),
∴當⊙O與直線y=﹣x+8有交點時圓心O的橫坐標m的取值范圍為8﹣2 ≤m≤8+2 .
【解析】(1)四邊形OCPD為正方形.理由如下:連接OC、OD(如圖甲),根據(jù)切線性質(zhì)知OC⊥PC,PD⊥PD,結合已知條件得∠OCP=∠ODP=
∠CPD=90°,再由矩形判定得四邊形OCPD為矩形,又根據(jù)一組鄰邊相等的矩形是正方形即可得證.
(2)作PF⊥x軸于F(如圖甲),由正方形性質(zhì)知OP= OD=2 ,設P(t,﹣t+8),根據(jù)勾股定理得一個方程,解之即可得出P點坐標.
(3)如圖乙,由已知得直線y1=﹣x+b將⊙O的圓周分得的劣弧為圓周的 ,再分情況討論:①當點A和點B都在坐標軸的正半軸上時,b=2 ;②當點A和點B都在坐標軸的負半軸上時,b=﹣2 ;從而得出答案.
(4)由直線解析式可知A(0,8),B(8,0),從而得出△OAB為等腰直角三角形,再分情況討論:①當圓移動到點O′時與直線AB相切,作O′M⊥AB(如圖丙),從而得△O′BM為等腰直角三角形,由等腰直角三角形性質(zhì)知BO′= O′B=2 ,從而得點O′的坐標為(8﹣2 ,0);
②當圓移動到點O″時與直線AB相切,作O″N⊥AB(如圖丙),由等腰直角三角形性質(zhì)知B O″=2 ,從而得點O″的坐標為(8+2 ,0),
從而得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】小丹、小林是某中學八年級的同班同學,在升入九年級時,學校打算重新組班,他們將被隨機編入A,B,C三個班.
(1)請你用畫樹狀圖法或列表法,列出所有可能的結果;
(2)求兩人再次成為同班同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應關系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時出發(fā),同時到達終點
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度
C. 小蘇前15s跑過的路程大于小林前15s跑過的路程
D. 小林在跑最后100m的過程中,與小蘇相遇2次
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設DA=2.
(1)求線段EC的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市市民晚飯后1小時內(nèi)的生活方式,調(diào)查小組設計了“閱讀”、“鍛煉”、“看電視”和“其它”四個選項,用隨機抽樣的方法調(diào)查了該市部分市民,并根據(jù)調(diào)查結果繪制成如下統(tǒng)計圖.根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次共調(diào)查了名市民;
(2)補全條形統(tǒng)計圖;并在條形圖上方寫上數(shù)據(jù);
(3)該市共有480萬市民,估計該市市民晚飯后1小時內(nèi)鍛煉的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是用形狀大小都相同的黑色棋子擺成的圖形,觀察規(guī)律完成下列問題:
第1個圖形 第2個圖形 第3個圖形 …
(1)填寫下表:
圖形序號(個) | 1 | 2 | 3 | 4 | … |
棋子的顆數(shù) | 4 | 7 | 10 | … |
(2)照這樣方式下去,寫出擺第n個圖形的棋子數(shù)為_____________________。
(3)你知道第153個圖形需要幾顆棋子嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出BC邊上的高線AE;
(3)利用網(wǎng)格點和三角板畫圖或計算:△A′B′C′的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知直線BC//ED.
(1)若點A在直線DE上,且∠B=44°,∠EAC=30°,求∠BAC的度數(shù);
(2)若點G在BC的延長線上,求證:∠ACG =∠BAC+∠B.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構造兩個三角形全等來證明AE=EF,請敘述你的一個構造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標系中,當點E滑動到某處時,點F恰好落在拋物線y=﹣x2+x+1上,求此時點F的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com