(2013年四川廣安8分)如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長(zhǎng)400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后壩底增加的寬度AF的長(zhǎng);
(2)求完成這項(xiàng)工程需要土石多少立方米?
解:(1)分別過點(diǎn)E、D作EG⊥AB、DH⊥AB交AB于G、H,

∵四邊形ABCD是梯形,且AB∥CD,
∴DHEG。∴四邊形EGHD是矩形。
∴ED=GH。
在Rt△ADH中,
AH=DH÷tan∠DAH=8÷tan45°=8(米),
在Rt△FGE中,i=1:2=,∴FG=2EG=16(米),
∴AF=FG+GH﹣AH=16+2﹣8=10(米)。
答:加固后壩底增加的寬度AF為10米。
(2)加寬部分的體積V=S梯形AFED×壩長(zhǎng)=×(2+10)×8×400=19200(立方米).
答:完成這項(xiàng)工程需要土石19200立方米。
(1)分別過E、D作AB的垂線,設(shè)垂足為G、H.在Rt△EFG中,根據(jù)坡面的鉛直高度(即壩高)及坡比,即可求出FG的長(zhǎng),同理可在Rt△ADH中求出AH的長(zhǎng);由AF=FG+GH﹣AH求出AF的長(zhǎng)。
(2)已知了梯形AFED的上下底和高,易求得其面積.梯形AFED的面積乘以壩長(zhǎng)即為所需的土石的體積。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,馬路的兩邊CF、DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A、B兩點(diǎn)分別表示車站和超市。CD與AB所在直線互相平行,且都與馬路兩邊垂直,馬路寬20米,A,B相距62米,
∠A=67°,∠B=37°

(1)求CD與AB之間的距離;
(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B,求他沿折線A→D→C→B到達(dá)超市比直接橫穿馬路多走多少米
(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,小方在五月一日假期中到郊外放風(fēng)箏,風(fēng)箏飛到C 處時(shí)的線長(zhǎng)為20米,此時(shí)小方正好站在A處,并測(cè)得∠CBD=60°,牽引底端B離地面1.5米,求此時(shí)風(fēng)箏離地面的高度(結(jié)果精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川南充8分)如圖,公路AB為東西走向,在點(diǎn)A北偏東36.5°方向上,距離5千米處是村莊M;在點(diǎn)A北偏東53.5°方向上,距離10千米處是村莊N(參考數(shù)據(jù):sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75).

(1)求M,N兩村之間的距離;
(2)要在公路AB旁修建一個(gè)土特產(chǎn)收購(gòu)站P,使得M,N兩村到P站的距離之和最短,求這個(gè)最短距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川眉山9分)在矩形ABCD中,DC=2,CF⊥BD分別交BD、AD于點(diǎn)E、F,連接BF.

(1)求證:△DEC∽△FDC;
(2)當(dāng)F為AD的中點(diǎn)時(shí),求sin∠FBD的值及BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在矩形紙片ABCD中,AB=+1,AD=
(1)如圖②,將矩形紙片向上方翻折,使點(diǎn)D恰好落在AB邊上的D′處,壓平折痕交CD于點(diǎn)E,則折痕AE的長(zhǎng)為   ;
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點(diǎn)F,則四邊形B′FED′的面積為   
(3)如圖④,將圖②中的△AED′繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過頂點(diǎn)B,求弧D′D″的長(zhǎng).(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

sin30°=
A.0B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,要建造一個(gè)直角梯形的花圃.要求AD邊靠墻,CD⊥AD,AB:CD=5:4,另外三邊的和為20米.設(shè)AB的長(zhǎng)為5x米.

(1)請(qǐng)求出AD的長(zhǎng)(用含字母x的式子表示);
(2)若該花圃的面積為50米2,且周長(zhǎng)不大于30米,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,AB=2BC,現(xiàn)給出下列結(jié)論:①sinA=;②cosB=;③tanA=;④tanB=,其中正確的結(jié)論是     (只需填上正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案