【題目】已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( 。
A. 直角三角形 B. 銳角三角形 C. 鈍角三角形 D. 正三角形
科目:初中數(shù)學 來源: 題型:
【題目】下列式子中代數(shù)式的個數(shù)有( 。
﹣2x﹣5,﹣y,2y+1=4,4a4+2a2b3 , ﹣6.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)已知AB是⊙O的直徑,C是圓周上的動點,P是優(yōu)弧中點.
(1)求證:OP∥BC.
(2)連接PC交直徑AB于點D,當OC=DC時,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將進貨單價40元的商品按50元出售,能賣出500個,已知這種商品每漲價1元,就會少銷售10個。為了賺得8000元的利潤,售價應定為多少?這時應進貨多少個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=∠AP′B=__________;,進而求出等邊△ABC的邊長為__________;
問題得到解決.
請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com