【題目】“2017年張學(xué)友演唱會(huì)”于6月3日在我市觀山湖奧體中心舉辦,小張去離家2520米的奧體中心看演唱會(huì),到奧體中心后,發(fā)現(xiàn)演唱會(huì)門票忘帶了,此時(shí)離演唱會(huì)開始還有23分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車”原路趕回奧體中心,已知小張騎車的時(shí)間比跑步的時(shí)間少用了4分鐘,且騎車的平均速度是跑步的平均速度的1.5倍.
(1)求小張跑步的平均速度;
(2)如果小張?jiān)诩胰∑焙蛯ふ摇肮蚕韱诬嚒惫灿昧?分鐘,他能否在演唱會(huì)開始前趕到奧體中心?說明理由.

【答案】
(1)解:設(shè)小張跑步的平均速度為x米/分鐘,則小張騎車的平均速度為1.5x米/分鐘,

根據(jù)題意得: =4,

解得:x=210,

經(jīng)檢驗(yàn),x=210是原方程組的解.

答:小張跑步的平均速度為210米/分鐘.


(2)解:小張跑步到家所需時(shí)間為2520÷210=12(分鐘),

小張騎車所用時(shí)間為12﹣4=8(分鐘),

小張從開始跑步回家到趕回奧體中心所需時(shí)間為12+8+5=25(分鐘),

∵25>23,

∴小張不能在演唱會(huì)開始前趕到奧體中心.


【解析】(1)由已知條件設(shè)小張跑步的平均速度為x米/分鐘,則小張騎車的平均速度為1.5x米/分鐘,根據(jù)等量關(guān)系列出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出所求答案;
(2)先根據(jù)已知條件計(jì)算出出小張趕回奧體中心所需時(shí)間,將其與23進(jìn)行比較后即可得出他能否在演唱會(huì)開始前趕到奧體中心.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分式方程的應(yīng)用的相關(guān)知識(shí),掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0)C(b,c)三點(diǎn),其中abc滿足關(guān)系式,c64的算術(shù)平方根.

(1)直接寫出a,b,c的值:a=____,b=____,c= ____

(2)如果在第二象限內(nèi)有一點(diǎn)P(m,2),請(qǐng)用含m的式子表示四邊形APOB的面積S;

(3)(2)的條件下,是否存在點(diǎn)P,使四邊形APOB的面積與△ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD和矩形AEFG關(guān)于點(diǎn)A中心對(duì)稱,

(1)四邊形BDEG是菱形嗎?請(qǐng)說明理由.

(2)若矩形ABCD面積為8,求四邊形BDEG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,以對(duì)角線BD為邊作菱形BDFE,使B,C,E三點(diǎn)在同一直線上,連接BF,交CD于點(diǎn)G

1)求證:CG=CE;

2)若正方形邊長(zhǎng)為4,求菱形BDFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DE,連接CE、AF.

(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+a(a為常數(shù),a≠0)與反比例函數(shù)y= (a為常數(shù),a≠0)在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD內(nèi)作∠EAF=45°,AE交BC于點(diǎn)E,AF交CD于點(diǎn)F,連接EF,過點(diǎn)A作AH⊥EF,垂足為H,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,若BE=2,DF=3,則AH的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中.BC=,ABC=45°,BD平分ABC.若M,N分別是邊BD,BC上的動(dòng)點(diǎn),則CMMN的最小值是____

查看答案和解析>>

同步練習(xí)冊(cè)答案