精英家教網 > 初中數學 > 題目詳情
25、如圖,OA=OB,OC=OD,∠O=50°,∠D=35°,求∠AEC的度數.
分析:首先由已知可求得∠OAD的度數,通過三角形全等及四邊形的知識求出∠AEB的度數,然后可求出其鄰補角的度數.
解答:解:∵在△AOD中,∠O=50°,∠D=35°,
∴∠OAD=180°-50°-35°=95°,
∵在△AOD與△BOC中A=OB,OC=OD,∠O=∠O,
∴△AOD≌△BOC,
故∠OBC=∠OAD=95°,
在四邊形OBEA中∠AEB=360°-∠OBC-∠OAD-∠O,
=360°-95°-95°-50°,
=120°,
又∵∠AEB+∠AEC=180°,
∴∠AEC=180°-120°=60°.
點評:本題考查了全等三角形的判定及性質;解題過程中用到了三角形、四邊形的內角和的知識,要根據題目的要求及已知條件的位置綜合運用這些知識.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•玉田縣一模)如圖,OA⊥OB,△CDE的邊CD在OB上,∠ECD=45°.將△CDE繞點C逆時針旋轉75°,點E的對應點N恰好落在OA上,則
OC
CE
的值為
1
2
1
2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA=OB,OC=OD,∠O=50°,∠D=30°,則∠AEC等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA⊥OB,OC⊥OD,O是垂足,∠BOC=55°,那么∠AOD=
135°
135°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA⊥OB,∠COD為平角,若OC平分∠AOB,則∠BOD=
135
135
°.

查看答案和解析>>

同步練習冊答案