如圖,AB是⊙O的直徑,且AB=10,弦MN的長為8,若弦MN的兩端在圓上滑動(dòng)時(shí),始終與AB相交,記點(diǎn)A、B到MN的距離分別為h1,h2,則|h1-h2|等于(  )
A.5B.6C.7D.8

設(shè)AB、NM交于H,作OD⊥MN于D,連接OM.
∵AB是⊙O的直徑,且AB=10,弦MN的長為8,
∴DN=DM=4,
∵M(jìn)O=5,
∴OD=3.
∵BE⊥MN,AF⊥MN,OD⊥MN,
∴BEODAF,
∴△AFH△ODH△BEH,
AF
OD
=
AH
OH
=
5-OH
OH
AF
3
=
5-OH
OH
,
BE
OD
=
HB
OH
=
5+OH
OH
BE
3
=
5+OH
OH
,
1
3
(AF-BE)=-2,
∴|h1-h2|=|AF-BE|=6.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
(1)除了正方形外,寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱:______;
(2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB,并寫出點(diǎn)M的坐標(biāo);
(3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點(diǎn),P是線段DE上任意一點(diǎn).求證:四邊形OBPE是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=
9
5
,求CD,AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,將長方形紙片沿著CE所在直線對(duì)折,B點(diǎn)落在點(diǎn)B′處,CD與EB′交于點(diǎn)F,如果AB=10cm,AD=6cm,AE=2cm,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1,1.21,1.44,正放置的四個(gè)正方形的面積為S1、S2、S3、S4,則S1+S2+S3+S4的值是( 。
A.3.65B.2.42C.2.44D.2.65

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直線上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4,則S1+S2+S3+S4=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一架竹梯長13m,如圖(AB位置)斜靠在一面墻上,梯子底端離墻5m,
(1)求這個(gè)梯子頂端距地面有多高;
(2)如果梯子的頂端下滑4m(CD位置),那么梯子的底部在水平方向也滑動(dòng)了4m嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△ABC中,∠B=90°,B(0,0),A(0,4),C(4
3
,0).點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)當(dāng)t為何值時(shí),線段DE長為
39
;
(2)當(dāng)線段EF與以點(diǎn)B為圓心,半徑為1的⊙B有兩個(gè)公共交點(diǎn)時(shí),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案