【題目】下列依次給出的點的坐標(biāo)(0,3),(1,1),(2,﹣1),(3,﹣3),…,依此規(guī)律,則第6個點的坐標(biāo)為

【答案】(5,﹣7)
【解析】解:∵依次給出的點的坐標(biāo)(0,3),(1,1),(2,﹣1),(3,﹣3),…,
∴所給點的坐標(biāo)的規(guī)律得到各點的橫坐標(biāo)依次加1,縱坐標(biāo)依次減2,
∴第6個點的坐標(biāo)為(5,﹣7),
所以答案是:(5,﹣7).
【考點精析】本題主要考查了數(shù)與式的規(guī)律的相關(guān)知識點,需要掌握先從圖形上尋找規(guī)律,然后驗證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車廠改進生產(chǎn)工藝后,每天生產(chǎn)的汽車比原來每天生產(chǎn)的汽車多6輛,那么現(xiàn)在15天的產(chǎn)量就超過了原來20天的產(chǎn)量,設(shè)原來每天生產(chǎn)汽車x輛,則列出的不等式為( )

A. 15x>20(x+6) B. 15(x+6)>20x C. 15x>20(x-6) D. 15(x-6)>20x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A﹣30),B1,0),C0,3)三點,其頂點為D,對稱軸是直線llx軸交于點H

1)求該拋物線的解析式;

2)若點P是該拋物線對稱軸l上的一個動點,求PBC周長的最小值;

3)如圖(2),若E是線段AD上的一個動點( EA、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為mADF的面積為S

①求Sm的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo); 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,對角線AC、BD交于點O , 點EBC的中點OE=3cm , 則AB的長為(  )
A.3cm
B.6cm
C.9cm
D.12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:6a2﹣5a+2﹣3(a2﹣2a+1),其中a=﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2+3x=0的解是()

A.x=-3B.x1=0x2=3C.x1=0,x2=-3D.x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景點的門票價格如表:

購票人數(shù)/人

1~50

51~100

100以上

每人門票價/元

12

10

8

某校七年級(1)、(2)兩班計劃去游覽該景點,其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個團體購票,則只需花費816元.
(1)兩個班各有多少名學(xué)生?
(2)團體購票與單獨購票相比較,兩個班各節(jié)約了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題. 我們知道方程2x+3y=12有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得 ,(x、y為正整數(shù))∴ 則有0<x<6.又 為正整數(shù),則 為正整數(shù).
由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入
∴2x+3y=12的正整數(shù)解為
問題:
(1)請你寫出方程2x+y=5的一組正整數(shù)解:
(2)若 為自然數(shù),則滿足條件的x值有個;
A.2
B.3
C.4
D.5
(3)七年級某班為了獎勵學(xué)習(xí)進步的學(xué)生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程2x2-4x+m-1=0有兩個相等的實數(shù)根,則m的值為________。

查看答案和解析>>

同步練習(xí)冊答案