【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個老年活動中心,這樣必須把1200立方米的生活垃圾運走:

(1)假如每天能運x立方米,所需時間為y天,寫出y與x之間的函數(shù)表達式;

(2)若每輛拖拉機一天能運12立方米,則5輛這樣的拖拉機要用多少天才能運完?

(3)(2)的情況下,運了8天后,剩下的任務要在不超過6天的時間內(nèi)完成,那么至少需要增加多少輛這樣的拖拉機才能按時完成任務?

【答案】(1)y=;(2)20天;(3)5輛.

【解析】

試題分析:(1)根據(jù)每天能運xm3,所需時間為y天的積就是1200m3,即可寫出函數(shù)關系式;

(2)把x=12×5=60代入,即可求得天數(shù);

(3)首先算出8天以后剩余的數(shù)量,然后計算出6天運完所需的拖拉機數(shù),即可求解.

試題解析:(1)xy=1200,

y=

(2)x=12×5=60,代入函數(shù)解析式得;y==20(天)

答:20天運完;

(3)運了8天后剩余的垃圾是1200-8×60=720m3

剩下的任務要在不超過6天的時間完成則每天至少運720÷6=120m3

則需要的拖拉機數(shù)是:120÷12=10(輛),

則至少需要增加10-5=5輛這樣的拖拉機才能按時完成任務.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子里,裝有四個分別標有數(shù)字﹣2,﹣1,1,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小強先從盒子里隨機取出一個小球,記下數(shù)字為a;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為b.

(1)用列表法或畫樹狀圖表示出(a,b)的所有可能出現(xiàn)的結(jié)果;

(2)求小強、小華各取一次小球所確定的點(a,b)落在二次函數(shù)y=x2的圖象上的概率;

(3)求小強、小華各取一次小球所確定的數(shù)a,b滿足直線y=ax+b經(jīng)過一、二、三象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在端午節(jié)道來之前,雙十中學高中部食堂推薦了A,B,C三家粽子專賣店,對全校師生愛吃哪家店的粽子作調(diào)查,以決定最終向哪家店采購.下面的統(tǒng)計量中最值得關注的是( 。

A. 方差 B. 平均數(shù) C. 中位數(shù) D. 眾數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,一個無蓋的長方體盒子的棱長分別為,,,盒子的內(nèi)部頂點處有一只昆蟲甲,在盒子的內(nèi)部頂點處有一只昆蟲乙(盒壁的厚度忽略不計)假設昆蟲甲在頂點處靜止不動,請計算處的昆蟲乙沿盒子內(nèi)壁爬行到昆蟲甲處的最短路程,并畫出其最短路徑,簡要說明畫法

2)如果(1)問中的長方體的棱長分別為,,如圖,假設昆蟲甲從盒內(nèi)頂點1厘米/秒的速度在盒子的內(nèi)部沿棱向下爬行,同時昆蟲乙從盒內(nèi)頂點3厘米/秒的速度在盒壁的側(cè)面上爬行,那么昆蟲乙至少需要多長時間才能捕捉到昆蟲甲?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O為圓錐頂點,OA、OB為圓錐的母線,COB中點,一只小螞蟻從點C開始沿圓錐側(cè)面爬行到點A,另一只小螞蟻繞著圓錐側(cè)面爬行到點B,它們所爬行的最短路線的痕跡如右圖所示,若沿OA剪開,則得到的圓錐側(cè)面展開圖為( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】人體中紅細胞的直徑約為0.0000077m,將數(shù)0.0000077用科學記數(shù)法表示為( )
A.77×105
B.0.77×107
C.7.7×106
D.7.7×107

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知ABCD,EFAB于點O,FGC=125°,求EFG的度數(shù).

下面提供三種思路:

(1)過點F作FHAB;

(2)延長EF交CD于M;

(3)延長GF交AB于K.

請你利用三個思路中的兩個思路,

將圖形補充完整,求EFG的度數(shù).

解(一):

解(二):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( )
A.2a+3b=5ab
B.a3a2=a6
C.a6÷a2=a4
D.(﹣2a32=﹣4a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線y=2x2先沿x軸方向向左平移2個單位,再沿y軸方向向下平移3個單位,所得拋物線的解析式是______________.

查看答案和解析>>

同步練習冊答案