【題目】如圖,已知直線a∥b,且a與b之間的距離為4,點(diǎn)A到直線a的距離為2,點(diǎn)B到直線b的距離為3,.試在直線a上找一點(diǎn)M,在直線b上找一點(diǎn)N,滿足MN⊥a且AM+MN+NB的長度和最短,則此時AM+NB=( )
A.6 B. 8 C. 10 D. 12
【答案】B
【解析】
試題分析:
MN表示直線a與直線b之間的距離,是定值,只要滿足AM+NB的值最小即可
試題解析:
解:作點(diǎn)A關(guān)于直線a的對稱點(diǎn)A’,并延長AA’,過點(diǎn)B作BE⊥AA’于點(diǎn)E,連接A’B交直線b于點(diǎn)N,過點(diǎn)N作直線MN⊥直線a,連接AM,BN
∵點(diǎn)A到直線a的距離為2,a與b之間的距離為4
∴AA’=MN=4
∴四邊形AA’NM是平行四邊形
∴AM+NB=A’N+NB=A’B
過點(diǎn)B作BE⊥AA’,交AA’于點(diǎn)E,
易得AE=2+4+3=9,,A’E=2+3=5
在中,
在中,
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用計(jì)算器求25的值時,按鍵的順序是( )
A. 5、yx、2、= B. 2、yx、5、= C. 5、2、yx、= D. 2、3、yx、=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形一邊上的高( )
A. 必在三角形內(nèi)部 B. 必在三角形外部
C. 必在三角形的邊上 D. 以上三種情況都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海水受日月的引力而產(chǎn)生潮汐現(xiàn)象.早晨海水上漲叫做潮,黃昏海水上漲叫做汐,合稱潮汐.潮汐與人類的生活有著密切的聯(lián)系.某港口某天從0時到12時的水深情況如下表,其中T表示時刻,h表示水深.
T(時) | 0 | 3 | 6 | 9 | 12 |
h(米) | 5 | 7.4 | 5.1 | 2.6 | 4.5 |
上述問題中,字母T,h表示的是變量還是常量,簡述你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如表是某報(bào)紙公布的世界人口數(shù)據(jù)情況:
年份 | 1957 | 1974 | 1987 | 1999 | 2010 | 2025 |
人口數(shù) | 30億 | 40億 | 50億 | 60億 | 70億 | 80億 |
(1)表中有幾個變量?
(2)如果要用x表示年份,用y表示世界人口總數(shù),那么隨著x的變化,y的變化趨勢是怎樣的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩圓相交,它們的圓心距為3,一個圓的半徑是2,那么另一個圓的半徑長可以是( )
A. 1 B. 3 C. 5 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=2x+b與x軸的交點(diǎn)坐標(biāo)是(2,0),則關(guān)于x的方程2x+b=0的解是( )
A.x=2 B.x=4 C.x=8 D.x=10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
《張丘建算經(jīng)》是一部數(shù)學(xué)問題集,其內(nèi)容、范圍與《九章算術(shù)》相仿。其中提出并解決了一個在數(shù)學(xué)史上非常著名的不定方程問題,通常稱為“百雞問題”:“今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一。凡百錢買雞百只,問雞翁、母、雛各幾何。”
譯文:公雞每只值五文錢,母雞每只值三文錢,小雞每三只值一文錢,F(xiàn)在用一百文錢買一百只雞,問這一百只雞中,公雞、母雞、小雞各有多少只?
結(jié)合你學(xué)過的知識,解決下列問題:
(1)若設(shè)公雞有x只,母雞有y只,
①則小雞有____________只,買小雞一共花費(fèi)____________文錢;(用含x,y的式子表示)
②根據(jù)題意列出一個含有x,y的方程: ______________________________;
(2)若對“百雞問題”增加一個條件:公雞數(shù)量是母雞數(shù)量的3倍,求此時公雞、母雞、小雞各有多少只?
(3)除了問題(2)中的解之外,請你再直接寫出兩組符合“百雞問題”的解。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com