【題目】已知:∠MON=80°,OE平分∠MON,點(diǎn)A、B、C分別是射線OM、OE、ON上的動(dòng)點(diǎn)(A、B、C不與點(diǎn)O重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x.

(1)如圖1,若AB∥ON,則∠ABO的度數(shù)是;
(2)如圖2,當(dāng)∠BAD=∠ABD時(shí),試求x的值(要說明理由);
(3)如圖3,若AB⊥OM,則是否存在這樣的x值,使得△ADB中有兩個(gè)相等的角?若存在,直接寫出x的值;若不存在,說明理由.(自己畫圖)

【答案】
(1)40°
(2)

解:如答圖1,

∵∠MON=80°,且OE平分∠MON,

∴∠1=∠2=40°,

又∵AB∥ON,

∴∠3=∠1=40°,

∵∠BAD=∠ABD,

∴∠BAD=40°

∴∠ADO=80°,

∴∠OAC=60°,

即x=60°


(3)

解:存在這樣的x,

①如答圖2,

當(dāng)點(diǎn)D在線段OB上時(shí),

若∠BAD=∠ABD,則x=40°;

若∠BAD=∠BDA,則x=25°;

若∠ADB=∠ABD,則x=10°.

②如圖3,

當(dāng)點(diǎn)D在射線BE上時(shí),因?yàn)椤螦BE=130°,且三角形的內(nèi)角和為180°,

所以只有∠BAD=∠BDA,此時(shí)x=130°,C不在ON上,舍去;

綜上可知,存在這樣的x的值,使得△ADB中有兩個(gè)相等的角,

且x=10°、25°、40°


【解析】解:(1)如圖1∵∠MON=80°,OE平分∠MON,
∴∠AOB=∠BON=40°,
∵AB∥ON,
∴∠ABO=∠BON=40°
故答案是:40°;
(1)由OE平分∠MON得∠AOB=∠BON=40°;再由AB∥ON,得∠ABO=∠BON=40°。
(2)由∠MON=80°,且OE平分∠MON得∠1=∠2=40°;再由AB∥ON,得∠3=∠1=40°,再依據(jù)等量代換得到∠OAC=60°,即x=60°。
(3)需要分類討論:當(dāng)點(diǎn)D在線段OB上和點(diǎn)D在射線BE上兩種情況,根據(jù)三角形的內(nèi)角和求得x的值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和與外角和為540°,則它是( )邊形( )

A.5B.4 C.3 D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=2(x﹣1)2圖象的頂點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn)再求值:(2a+b)(b﹣2a)﹣(a﹣3b)2 , 其中a=﹣1,b=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四川蘆山發(fā)生7.0級(jí)地震后,一周之內(nèi),通過鐵路部門已運(yùn)送救災(zāi)物資15810噸.將15810用科學(xué)記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一點(diǎn),F(xiàn)是AB延長(zhǎng)線上一點(diǎn),且CE=BF.

(1)試說明:DE=DF;
(2)在圖中,若G在AB上且∠EDG=60°,試猜想CE、EG、BG之間的數(shù)量關(guān)系并證明此結(jié)論;
(3)若題中條件“∠CAB=60°,∠CDB=120°”改為∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG滿足什么條件時(shí),(2)中結(jié)論仍然成立?(只寫結(jié)果不要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示0.000034,結(jié)果是(
A.3.4×105
B.3.4×104
C.0.34×104
D.34×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司員工的月工資統(tǒng)計(jì)表如下,這個(gè)公司員工工資的中位數(shù)為(  )

月工資/

9000

8000

7000

6000

5000

4000

人數(shù)

1

2

5

12

30

10

A. 7000B. 6000C. 5000D. 6500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我區(qū)綠色和特色農(nóng)產(chǎn)品在市場(chǎng)上頗具競(jìng)爭(zhēng)力.外貿(mào)商胡經(jīng)理按市場(chǎng)價(jià)格10元/千

克在我區(qū)收購(gòu)了6000千克蘑菇存放入冷庫(kù)中.請(qǐng)根據(jù)胡經(jīng)理提供的預(yù)測(cè)信息(如圖)幫胡經(jīng)理解決以下問題:

(1)若胡經(jīng)理想將這批蘑菇存放x天后一次性出售, 則x天后這批蘑菇的銷售單價(jià)為 元, 這批蘑菇的銷售量是 千克;

(2)胡經(jīng)理將這批蘑菇存放多少天后,一次性出售所得的銷售總金額為100000元;(銷售總金額=銷售單價(jià)×銷售量).

(3)將這批蘑菇存放多少天后一次性出售可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案