【題目】如圖,正△ABC的邊長(zhǎng)為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn= . (用含n的式子表示)
【答案】 ( )n
【解析】解:∵等邊三角形ABC的邊長(zhǎng)為2,AB1⊥BC,
∴BB1=1,AB=2,
根據(jù)勾股定理得:AB1= ,
∴S1= × ×( )2= ( )1;
∵等邊三角形AB1C1的邊長(zhǎng)為 ,AB2⊥B1C1,
∴B1B2= ,AB1= ,
根據(jù)勾股定理得:AB2= ,
∴S2= × ×( )2= ( )2;
依此類推,Sn= ( )n.
故答案為: ( )n.
由AB1為邊長(zhǎng)為2的等邊三角形ABC的高,利用三線合一得到B1為BC的中點(diǎn),求出BB1的長(zhǎng),利用勾股定理求出AB1的長(zhǎng),進(jìn)而求出S1,同理求出S2,依此類推,得到Sn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外小組的同學(xué)們?cè)谏鐣?huì)實(shí)踐活動(dòng)中調(diào)查了20戶家庭某月的用電量,如下表所示:則這20戶家庭該月用電量的眾數(shù)和中位數(shù)分別是( )
用電量(度) | 120 | 140 | 160 | 180 | 200 |
戶數(shù) | 2 | 3 | 6 | 7 | 2 |
A.7,6B.7,3C.180,160D.180,170
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字,,,,如圖,正方形頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長(zhǎng).如:若從圖起跳,第一次擲得,就順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;若第二次擲得,就從開始順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;設(shè)游戲者從圈起跳.
()嘉嘉隨機(jī)擲一次骰子,求落回到圈的概率.
()淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用不等式的基本性質(zhì)求下列不等式的解集,并寫出變形的依據(jù).
(1)若x+2016>2017,則x___________;
(______________________)
(2)若2x>-,則x____________;
(__________________________)
(3)若-2x>-,則x____________;
(___________________________)
(4)若->-1,則x_________.
(_______________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓頂部有一旗桿AB,甲乙兩人分別在相距6米的C、D兩處測(cè)得B點(diǎn)和A點(diǎn)的仰角分別是42°和65°,且C、D、E在一條直線上.如果DE=15米,求旗桿AB的長(zhǎng)大約是多少米?(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)圓形的花園,其半徑為4米,現(xiàn)要擴(kuò)大花園,將其半徑增加2米,這樣花園的面積將增加多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0),點(diǎn)C(0,5),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求出對(duì)稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場(chǎng).圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點(diǎn)出發(fā)所行的時(shí)間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①“龜兔再次賽跑”的路程為1000米;
②兔子和烏龜同時(shí)從起點(diǎn)出發(fā);
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法是 . (把你認(rèn)為正確說法的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.
已知,如圖所示,BCE,AFE是直線,
AB∥CD,∠1=∠2,∠3=∠4.
求證:AD∥BE
證明:∵ AB∥CD (已知)
∴ ∠4 =∠ ( )
∵ ∠3 =∠4 (已知)
∴ ∠3 =∠ ( )
∵ ∠1 =∠2 (已知)
∴ ∠1+∠CAF =∠2+ ∠CAF ( )
即:∠ =∠ .
∴ ∠3 =∠ ( )
∴ AD∥BE ( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com