一家用電器開(kāi)發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價(jià)40元出售,每月可銷(xiāo)售20萬(wàn)件.為了增加銷(xiāo)量,公司決定采取降價(jià)的辦法,經(jīng)市場(chǎng)調(diào)研,每降價(jià)1元,月銷(xiāo)售量可增加2萬(wàn)件.
⑴ 求出月銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
⑵ 求出月銷(xiāo)售利潤(rùn)z(萬(wàn)元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并在下面坐標(biāo)系中,畫(huà)出圖象草圖;

⑶ 為了使月銷(xiāo)售利潤(rùn)不低于480萬(wàn)元,請(qǐng)借助⑵中所畫(huà)圖象進(jìn)行分析,說(shuō)明銷(xiāo)售單價(jià)的取值范圍.
(1);(2);(3).

試題分析:(1)根據(jù)題意,化簡(jiǎn)即可.
(2)根據(jù)月銷(xiāo)售利潤(rùn)=每件利潤(rùn)×月銷(xiāo)售量得到,分簡(jiǎn)即可,然后畫(huà)出此函數(shù)的圖象.
(3)先計(jì)算出時(shí)x所對(duì)應(yīng)的值,再根據(jù)函數(shù)性質(zhì)和圖象進(jìn)行回答即可.
(1)
∴y與x的函數(shù)關(guān)系式為
(2),
∴z與x的函數(shù)關(guān)系式為
此函數(shù)的圖象大致為:

(3)令,得,整理得
解得,. 
由圖象可知,要使月銷(xiāo)售利潤(rùn)不低于萬(wàn)元,產(chǎn)品的銷(xiāo)售單價(jià)應(yīng)在元到元之間(即).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線 (b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,–1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若該拋物線過(guò)A,B兩點(diǎn),求b,c的值;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與直線AC交于另一點(diǎn)Q.
①點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M,P,Q三點(diǎn)為頂點(diǎn)的三角形是以PQ為腰的等腰直角三角形時(shí),求點(diǎn)M的坐標(biāo);
②取BC的中點(diǎn)N,連接NP,BQ.當(dāng)取最大值時(shí),點(diǎn)Q的坐標(biāo)為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,在□ABCD中,對(duì)角線AC⊥AB,BC=10,tan∠B=2.點(diǎn)E是BC邊上的動(dòng)點(diǎn),過(guò)點(diǎn)E作EF⊥BC于點(diǎn)E,交折線AB-AD于點(diǎn)F,以EF為邊在其右側(cè)作正方形EFGH,使EH邊落在射線BC上.點(diǎn)E從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度在BC邊上運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),點(diǎn)E停止運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t()秒.
(1)□ABCD的面積為          ;當(dāng)t=      秒時(shí),點(diǎn)F與點(diǎn)A重合;
(2)點(diǎn)E在運(yùn)動(dòng)過(guò)程中,連接正方形EFGH的對(duì)角線EG,得△EHG,設(shè)△EHG與△ABC的重疊部分面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式以及對(duì)應(yīng)的自變量t的取值范圍;
(3)作點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)Bˊ,連接CBˊ交AD邊于點(diǎn)M(如圖②),當(dāng)點(diǎn)F在AD邊上時(shí),EF與對(duì)角線AC交于點(diǎn)N,連接MN得△MNC.是否存在時(shí)間t,使△MNC為等腰三角形?若存在,請(qǐng)求出使△MNC為等腰三角形的時(shí)間t;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0), 點(diǎn)C(0,5),點(diǎn)D(1,8)在拋物線上,M為拋物線的頂點(diǎn).求

(1)拋物線的解析式;
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司開(kāi)發(fā)了一種新型的家電產(chǎn)品,又適逢“家電下鄉(xiāng)”的優(yōu)惠政策.現(xiàn)投資40萬(wàn)元用于該產(chǎn)品的廣告促銷(xiāo),已知該產(chǎn)品的本地銷(xiāo)售量y1(萬(wàn)臺(tái))與本地的廣告費(fèi)用x(萬(wàn)元)之間的函數(shù)關(guān)系滿足,該產(chǎn)品的外地銷(xiāo)售量y2(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系可用如圖所示的拋物線和線段AB來(lái)表示,其中點(diǎn)A為拋物線的頂點(diǎn).

(1)結(jié)合圖象,寫(xiě)出y2(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系式;
(2)求該產(chǎn)品的銷(xiāo)售總量y(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系式;
(3)如何安排廣告費(fèi)用才能使銷(xiāo)售總量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng)。當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移。DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5)。解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說(shuō)明理由。
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由。(圖(3)供同學(xué)們做題使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸相交于點(diǎn),頂點(diǎn)為,點(diǎn)在這個(gè)二次函數(shù)圖象的對(duì)稱軸上.若四邊形是一個(gè)邊長(zhǎng)為2且有一個(gè)內(nèi)角為的菱形.求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

方程的正數(shù)根的個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若二次函數(shù)配方后為,則       .

查看答案和解析>>

同步練習(xí)冊(cè)答案