【題目】如圖,為中的一條射線,點(diǎn)在邊上,于,交于點(diǎn),交于點(diǎn),于點(diǎn),交于點(diǎn),連接交于點(diǎn).
求證:四邊形為矩形;
若,試探究與的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)詳見(jiàn)解析;(2),理由詳見(jiàn)解析.
【解析】
(1)根據(jù)垂直于同一直線的兩直線平行可得PH∥MD,再根據(jù)平行于同一直線的兩直線平行可得PM∥QR,然后求出四邊形PQRM是平行四邊形,再求出∠MPQ=90°,根據(jù)有一個(gè)角是直角的平行四邊形是矩形證明即可;
(2)根據(jù)矩形的對(duì)角線互相平分可得PS=PR,然后求出OP=PS,根據(jù)等邊對(duì)等角的性質(zhì)可得∠POS=∠PSO,再根據(jù)兩直線平行,同位角相等可得∠SQR=∠BON,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠PSO=2∠SQR,然后整理即可得解.
∵,,
∴,
∵,,
∴,
∴四邊形是平行四邊形,
∵,
∴,
∵,
∴,
∴四邊形為矩形;
.理由如下:
∵四邊形為矩形,
∴,
∴,
又∵,
∴,
∴,
∵,
∴,
在中,,
∴,
∴,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點(diǎn)在格點(diǎn)上),
⑴選取其中三條線段,使得這三條線段能?chē)梢粋(gè)直角三角形.
答:選取的三條線段為 .
⑵只變動(dòng)其中兩條線段的位置,在原圖中畫(huà)出一個(gè)滿足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).
答:畫(huà)出的直角三角形為△ .
⑶所畫(huà)直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB、CD邊于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)求證:△ADE≌△CBF;
(3)當(dāng)四邊形BEDF是菱形時(shí),直接寫(xiě)出線段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
求該拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
求拋物線與軸交點(diǎn)的坐標(biāo);
畫(huà)出拋物線的示意圖;
根據(jù)圖象回答:當(dāng)在什么范圍時(shí),隨的增大而增大?當(dāng)在什么范圍時(shí),隨的增大而減小?
根據(jù)圖象回答:當(dāng)為何值時(shí),;當(dāng)為何值時(shí),.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲村和乙村靠近公路a、b,為了發(fā)展經(jīng)濟(jì),甲乙兩村準(zhǔn)備合建一個(gè)工廠,經(jīng)協(xié)商,工廠必須滿足以下要求:
(1)到兩村的距離相等;
(2)到兩條公路的距離相等.你能幫忙確定工廠的位置嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=110°,點(diǎn)E、G分別是AB、AC的中點(diǎn),DE⊥AB交BC于D,FG⊥AC交BC于F,連接AD、AF.試求∠DAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,點(diǎn)為三條角平分線的交點(diǎn),于,于,于,且,,,則點(diǎn)到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB、連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E.
(1)判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若BE=4,DE=8,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com