【題目】如圖,AE∥CF,∠ACF的平分線交AE于點B,G是CF上的一點,∠GBE的平分線交CF于點D,且BD⊥BC,下列結(jié)論:①BC平分∠ABG;②AC∥BG;③與∠DBE互余的角有2個;④若∠A=α,則∠BDF=.其中正確的有_____.(把你認(rèn)為正確結(jié)論的序號都填上)
【答案】①②④.
【解析】
求出∠EBD+∠ABC=90°,∠DBG+∠CBG=90°,求出∠ABC=∠GBC,根據(jù)角平分線的定義即可判斷①;根據(jù)平行線的性質(zhì)得出∠ABC=∠BCG,求出∠ACB=∠GBC,根據(jù)平行線的判定即可判斷②;根據(jù)余角的定義即可判斷③;根據(jù)平行線的性質(zhì)得出∠EBG=∠A=α,求出∠EBD=∠EBG=α,根據(jù)平行線的性質(zhì)得出∠EBD+∠BDF=180°,即可判斷④.
∵BD⊥BC,
∴∠DBC=90°,
∴∠EBD+∠ABC=180°﹣90°=90°,∠DBG+∠CBG=90°,
∵BD平分∠EBG,
∴∠EBD=∠DBG,
∴∠ABC=∠GBC,
即BC平分∠ABG,故①正確;
∵AE∥CF,
∴∠ABC=∠BCG,
∵CB平分∠ACF,
∴∠ACB=∠BCG,
∵∠ABC=∠GBC,
∴∠ACB=∠GBC,
∴AC∥BG,故②正確;
與∠DBE互余的角有∠ABC,∠CBG,∠ACB,∠BCG,共4個,故③錯誤;
∵AC∥BG,∠A=α,
∴∠EBG=∠A=α,
∵∠EBD=∠DBG,
∴∠EBD=∠EBG=,
∵AB∥CF,
∴∠EBD+∠BDF=180°,
∴∠BDF=180°﹣∠EBD=180°﹣,故④正確;
故答案為:①②④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.
(1)求∠B的度數(shù);
(2)求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )
A. π﹣2 B. π﹣ C. π﹣2 D. π﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點D為AB的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為_____厘米/秒,△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知P(1,2).
(1)在平面直角坐標(biāo)系中描出點P(保留畫圖痕跡);
(2)如果將點P向左平移3個單位長度,再向上平移1個單位長度得到點P',則點P'的坐標(biāo)為 .
(3)點A在坐標(biāo)軸上,若S△OAP=2,直接寫出滿足條件的點A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在三角形ABC中,D是BC上一點,且∠CDA=∠CAB.(注:三角形內(nèi)角和等于180°)
(1)求證:∠CDA=∠DAB+∠DBA;
(2)如圖2,MN是經(jīng)過點D的一條直線,若直線MN交AC邊于點E,且∠CDE=∠CAD.求證:∠AED+∠EAB=180°;
(3)將圖2中的直線MN繞點D旋轉(zhuǎn),使它與射線AB交于點P(點P不與點A,B重合).在圖3中畫出直線MN,并用等式表示∠CAD,∠BDP,∠BPD這三個角之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有A,B兩點,分別表示﹣40,20,甲、乙兩只螞蟻分別從A,B兩點同時出發(fā),甲沿線段AB方向以3個單位長度/秒的速度向右運動,甲到達(dá)點B處時運動停止;乙沿線段BA方向以5個單位長度/秒的速度向左運動.
(1)求甲、乙第一次相遇點所表示的數(shù).
(2)求經(jīng)過多少秒時,甲、乙相距28個單位長度?
(3)若乙到達(dá)A點后立刻掉頭追趕甲(速度保持不變),則在甲到達(dá)B點前,甲、乙是否還能再次相遇?若能,求出相遇點所表示的數(shù);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)軸上有兩點,點表示的數(shù)為,點在點的左邊,且.若有一動點從數(shù)軸上點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,動點從點出發(fā),以每秒個單 位長度的速度沿著數(shù)軸向右勻速運動,設(shè)運動時間為秒,解決以下問題:
寫出數(shù)軸上點所表示的數(shù);
若點分別從兩點同時出發(fā),問點運動多少秒與點相距個單位長度?
探索問題:若為的中點,為的中點,當(dāng)點在線段上運動過程中,探索線段 與線段的數(shù)量關(guān)系(寫出過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com