如圖,拋物線y=-x2+5x+n經(jīng)過點A(1,0),與y軸交于點B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.

【答案】分析:(1)將A點的坐標代入拋物線中,即可得出二次函數(shù)的解析式;
(2)本題要分兩種情況進行討論:
①PB=AB,先根據(jù)拋物線的解析式求出B點的坐標,即可得出OB的長,進而可求出AB的長,也就知道了PB的長,由此可求出P點的坐標;
②PA=AB,此時P與B關于x軸對稱,由此可求出P點的坐標.
解答:解:(1)∵拋物線y=-x2+5x+n經(jīng)過點A(1,0)
∴n=-4
∴y=-x2+5x-4;

(2)∵拋物線的解析式為y=-x2+5x-4,
∴令x=0,則y=-4,
∴B點坐標(0,-4),AB=,
①當PB=AB時,PB=AB=,
∴OP=PB-OB=-4.
∴P(0,-4)
②當PA=AB時,P、B關于x軸對稱,
∴P(0,4)
因此P點的坐標為(0,-4)或(0,4).
點評:本題考查了二次函數(shù)解析式的確定、等腰三角形的構成等知識點,主要考查學生分類討論、數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,拋物線C1,C2關于x軸對稱;拋物線C1,C3關于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線的頂點坐標為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標;
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標;
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習冊答案