拋物線軸于、兩點(diǎn),交軸于點(diǎn),已知拋物線的對(duì)稱軸為,

,,

(1)求二次函數(shù)的解析式;

(2)   在拋物線對(duì)稱軸上是否存在一點(diǎn),使點(diǎn)、兩點(diǎn)距離之差最大?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)   平行于軸的一條直線交拋物線于兩點(diǎn),若以為直徑的圓恰好與軸相切,求此圓的半徑.

 

 

 

【答案】

(1)將代入,

   得

   將代入,

.……….(1)

 

是對(duì)稱軸,

 

 
.          (2)

將(2)代入(1)得

 

 
,   

所以,二次函數(shù)得解析式是

(2)與對(duì)稱軸的交點(diǎn)即為到的距離之差最大的點(diǎn).

點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

∴ 直線的解析式是

又對(duì)稱軸為,

∴ 點(diǎn)的坐標(biāo).   

(3)設(shè),所求圓的半徑為r,

,…………….(1)

     ∵ 對(duì)稱軸為,

∴  .        …………….(2)

由(1)、(2)得:.……….(3)

代入解析式,

得  ,………….(4)

整理得:

由于 r=±y,當(dāng)時(shí),,

解得, ,  (舍去),

當(dāng)時(shí),,

解得,  ,  (舍去).

    所以圓的半徑是

【解析】(1)根據(jù)拋物線過(guò)C點(diǎn),可得出c=-3,對(duì)稱軸x=1,則-=1,然后可將B點(diǎn)坐標(biāo)代入拋物線的解析式中,聯(lián)立由對(duì)稱軸得出的關(guān)系式即可求出拋物線的解析式.

(2)本題的關(guān)鍵是要確定P點(diǎn)的位置,由于A、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,因此可連接AC,那么P點(diǎn)就是直線AC與對(duì)稱軸的交點(diǎn).可根據(jù)A、C的坐標(biāo)求出AC所在直線的解析式,進(jìn)而可根據(jù)拋物線對(duì)稱軸的解析式求出P點(diǎn)的坐標(biāo).

(3)根據(jù)圓和拋物線的對(duì)稱性可知:圓心必在對(duì)稱軸上.因此可用半徑r表示出M、N的坐標(biāo),然后代入拋物線中即可求出r的值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

拋物線軸于、兩點(diǎn),交軸于點(diǎn),頂點(diǎn)為.

【小題1】寫(xiě)出拋物線的對(duì)稱軸及、兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)
【小題2】連接并以為直徑作⊙,當(dāng)時(shí),請(qǐng)判斷⊙是否經(jīng)過(guò)點(diǎn),并說(shuō)明理由;
【小題3】在(2)題的條件下,點(diǎn)是拋物線上任意一點(diǎn),過(guò)作直線垂直于對(duì)稱軸,垂足為. 那么是否存在這樣的點(diǎn),使△與以、、為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河南省周口市黃集二中九年級(jí)上學(xué)期聯(lián)考數(shù)學(xué)卷 題型:解答題

拋物線軸于、兩點(diǎn),交軸于點(diǎn),頂點(diǎn)為.

【小題1】(1)寫(xiě)出拋物線的對(duì)稱軸及、兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)
【小題2】(2)連接并以為直徑作⊙,當(dāng)時(shí),請(qǐng)判斷⊙是否經(jīng)過(guò)點(diǎn),并說(shuō)明理由;
【小題3】(3)在(2)題的條件下,點(diǎn)是拋物線上任意一點(diǎn),過(guò)作直線垂直于對(duì)稱軸,垂足為. 那么是否存在這樣的點(diǎn),使△與以、、為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(帶解析) 題型:解答題

拋物線軸于、兩點(diǎn),交軸于點(diǎn),已知拋物線的對(duì)稱軸為,,,
(1)求二次函數(shù)的解析式;
在拋物線對(duì)稱軸上是否存在一點(diǎn),使點(diǎn)、兩點(diǎn)距離之差最大?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
平行于軸的一條直線交拋物線于兩點(diǎn),若以為直徑的圓恰好與軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河南省周口市九年級(jí)上學(xué)期聯(lián)考數(shù)學(xué)卷 題型:解答題

拋物線軸于、兩點(diǎn),交軸于點(diǎn),頂點(diǎn)為.

1.(1)寫(xiě)出拋物線的對(duì)稱軸及、兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)

2.(2)連接并以為直徑作⊙,當(dāng)時(shí),請(qǐng)判斷⊙是否經(jīng)過(guò)點(diǎn),并說(shuō)明理由;

3.(3)在(2)題的條件下,點(diǎn)是拋物線上任意一點(diǎn),過(guò)作直線垂直于對(duì)稱軸,垂足為. 那么是否存在這樣的點(diǎn),使△與以、、為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案