【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價和零售價如表所示:

品名

獼猴桃

芒果

批發(fā)價千克

20

40

零售價千克

26

50

他購進的獼猴桃和芒果各多少千克?

如果獼猴桃和芒果全部賣完,他能賺多少錢?

【答案】(1)購進獼猴桃20千克,購進芒果30千克;(2)能賺420元錢.

【解析】

設(shè)購進獼猴桃x千克,購進芒果y千克,由總價單價數(shù)量結(jié)合老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

根據(jù)利潤銷售收入成本,即可求出結(jié)論.

設(shè)購進獼猴桃x千克,購進芒果y千克,

根據(jù)題意得:,

解得:

答:購進獼猴桃20千克,購進芒果30千克.

答:如果獼猴桃和芒果全部賣完,他能賺420元錢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將矩形紙片ABCD沿對角線BD向上折疊,點C落在點E處,BEAD于點F.

(1)求證:△BDF是等腰三角形;

(2)如圖2,過點DDGBE,交BC于點G,連接FGBD于點O.

①判斷四邊形BFDG的形狀,并說明理由;

②若AB=6,AD=8,求FG的長.

1

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y1= (x>0)圖象上一點,過點A作x軸的平行線,交反比例函數(shù)y2= (x>0)的圖象于點B,連接OA,OB,若△OAB的面積為2,則k2﹣k1的值為( )

A.﹣2
B.2
C.﹣4
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解全校2400名學(xué)生的閱讀興趣,從中隨機抽查了部分同學(xué),就“我最感興趣的書籍”進行了調(diào)查:A.小說、B.散文、C.科普、D.其他(每個同學(xué)只能選擇一項),進行了相關(guān)統(tǒng)計,整理并繪制出兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題

(1)本次抽查中,樣本容量為______;

(2)a______b______;

(3)扇形統(tǒng)計圖中,其他類書籍所在扇形的圓心角是______°;

(4)請根據(jù)樣本數(shù)據(jù),估計全校有多少名學(xué)生對散文感興趣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一盒子中裝有3個白色乒乓球,2個黃色乒乓球,1個紅色乒乓球,6個乒乓球除顏色外其它完全一樣,李明同學(xué)從盒子中任意摸出一乒乓球.

1)求摸到每種顏色球的概率;

2)李明和王濤同學(xué)一起做游戲,李明或王濤從上述盒子中任意摸一球,如果摸到白球,李明獲勝,否則王濤獲勝.這個游戲?qū)﹄p方公平嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃用3 800元購進節(jié)能燈120只,這兩種節(jié)能燈的進價、售價如下表:

進價(/)

售價(/)

甲型

25

30

乙型

45

60

(1)求甲、乙兩種節(jié)能燈各進多少只?

(2)全部售完120只節(jié)能燈后,該商場獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計劃購買甲、乙兩種圖書作為校園讀書節(jié)的獎品,已知甲種圖書的單價比乙種圖書的單價多10元,且購買3本甲種圖書和2本乙種圖書共需花費130

(1)甲、乙兩種圖書的單價分別為多少元?

(2)學(xué)校計劃購買這兩種圖書共50本,且投入總經(jīng)費不超過1200元,則最多可以購買甲種圖書多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某農(nóng)場有A、B兩種型號的收割機共20臺,每臺A型收割機每天可收大麥100畝或者小麥80畝,每臺B型收割機每天可收大麥80畝或者小麥60畝,該農(nóng)場現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺收割機全部收割大麥,并且恰好10天時間全部收完.

(1)問A、B兩種型號的收割機各多少臺?

(2)由于氣候影響,要求通過加班方式使每臺收割機每天多完成10%的收割量,問這20臺收割機能否在一周時間內(nèi)完成全部小麥收割任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時間x(分)之間的函數(shù)圖象如圖.

1A地與B地相距______km,甲的速度為______km/分;

2)求甲、乙兩人相遇時,乙行駛的路程;

3)當(dāng)乙到達終點A時,甲還需多少分鐘到達終點B?

查看答案和解析>>

同步練習(xí)冊答案