【題目】(1)如圖,小林同學(xué)想把一張矩形的紙沿對(duì)角線BD對(duì)折,對(duì)折后C點(diǎn)與C′點(diǎn)重合,BCAD相交于E,請(qǐng)你用尺規(guī)作圖的方法作出C′點(diǎn),并保留作圖痕跡.

(2)如圖,已知在ABC中,∠ABC=3C,AD是∠BAC的平分線,BEADE,求證:BE=(AC-AB)

【答案】(1)作圖見(jiàn)解析;(2)證明見(jiàn)解析

【解析】試題分析:(1)分別以B、D為圓心,以BC、CD的長(zhǎng)為半徑畫(huà)弧,兩弧的交點(diǎn)就是所要找的點(diǎn)C′;

(2)根據(jù)全等三角形的判定與性質(zhì),可得∠ABF=∠AFB,AB=AF,BE=EF,根據(jù)三角形外角的性質(zhì),可得∠C+∠CBF=∠AFB=∠ABF,根據(jù)角的和差、等量代換,可得∠CBF=∠C,根據(jù)等腰三角形的判定,可得BF=CF,根據(jù)線段的和差、等式的性質(zhì),可得答案.

試題解析:

(1)分別以B為圓心,以BC為半徑畫(huà)弧,以D為圓心,以DC為半徑畫(huà)弧,兩弧在AD的上方相交于一點(diǎn)C′,

C′為所要畫(huà)的點(diǎn). 保留作圖痕跡。

(2)證明:延長(zhǎng)BEACF,如圖所示:

AD是∠BAC的平分線,

∴∠BAE=FAE.

在△BAE和△FAE中,

∴△BAE≌△FAE,

∴∠ABF=AFB,BE=FE,AB=AF,

BE=BF,

ABC=ABF+FBC=AFB+FBC=(C+FBC)+FBC=C+2FBC,

又∵∠ABC=3C,

3C=C+2FBC,

∴∠FBC=C,

BF=CF,

BE=CF,

CF=AC-AF=AC-AB,

BE=CF=(AC-AB).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABCRtABD中,∠ABC=BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)AAEDBCB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)BBFCADA的延長(zhǎng)線于點(diǎn)F,AEBF相交于點(diǎn)H

1)圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)

2)證明:四邊形AHBG是菱形;

3)若使四邊形AHBG是正方形,還需在RtABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫(xiě)出這個(gè)條件.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙OAC相切于點(diǎn)A,且AB=AC,BC與⊙O相交于點(diǎn)D,下列說(shuō)法不正確的是().

A. C = 45° B. CD=BD C. BAD=DAC D. CD=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BCGE,AFDE,1=50°

(1)求AFG的度數(shù);

(2)若AQ平分FAC,交BC于點(diǎn)Q,且Q=15°,求ACB的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)把下面證明過(guò)程補(bǔ)充完整:

已知:如圖,∠ADCABCBE、DF分別平行∠ABC、ADC,且∠12

求證:∠AC

證明:因?yàn)?/span>BE、DF分別平分∠ABC、ADC,(   ).

所以∠1ABC3ADC   ).

因?yàn)椤?/span>ABCADC(已知),

所以∠13   ),

因?yàn)椤?/span>12(已知),

所以∠23   ).

所以         ).

所以∠A   180°,C   180°   ).

所以∠AC   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】推理填空:

如圖,已知∠12,BC,可推得ABCD.理由如下:

∵∠12(已知),且∠14(____________),

∴∠24(等量代換)

CEBF(__________________________)

∴∠________3(______________________)

又∵∠BC(已知),

∴∠3B(等量代換)

ABCD(__________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,EAC上一點(diǎn),且AE=BC,過(guò)點(diǎn)AADCA,垂足為A,且AD=ACAB、DE交于點(diǎn)F試判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點(diǎn)EAE=2,EB=6,DEB=30°,求弦CD長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M,N分別是正五邊形ABCDE的邊BC,CD上的點(diǎn),且BM=CN,AMBN于點(diǎn)P.

(1)求證:△ABM≌△BCN;

(2)求∠APN的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案