精英家教網(wǎng)如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A與點B,點A的坐標為(0,4),M是圓上一點,∠BMO=120°.⊙C的半徑和圓心C的坐標分別是
 
 
分析:連接AB,OC,由圓周角定理可知AB為⊙O的直徑,再根據(jù)∠BMO=120°可求出∠BCO及∠BAO的度數(shù),由直角三角形的性質(zhì)可求出∠ABO的度數(shù),再根據(jù)等腰三角形的性質(zhì)及等邊三角形的判定定理即可求出⊙C的半徑;由△AOB是直角三角形可求出OB的長,過O作OD⊥OB于D,由垂徑定理可求出OD的長,進而得出D點的坐標,再根據(jù)直角三角形的性質(zhì)可求出CD的長,從而求出C點坐標.
解答:精英家教網(wǎng)解:連接AB,OC,
∵∠AOB=90°,
∴AB為⊙C的直徑,
∵∠BMO=120°,
∴∠BCO=120°,∠BAO=60°,
∵AC=OC,∠BAO=60°,
∴△AOC是等邊三角形,
∴⊙C的半徑=OA=4;
過C作CD⊥OB于D,則OD=
1
2
OB,
∵∠BAO=60°,
∴∠ABO=30°,
∴OD=
OA
tan30°
=
2
3
3
=2
3
,CD=
1
2
BC=
1
2
×4=2,
∴D點坐標為(-2
3
,0),
∴C點坐標為(-2
3
,2).
故答案為:4,C(-2
3
,2).
點評:本題考查的是圓心角、弧、弦的關(guān)系及圓周角定理、直角三角形的性質(zhì)、坐標與圖形的性質(zhì)及特殊角的三角函數(shù)值,根據(jù)題意畫出圖形,作出輔助線,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A與點B,點A的坐標為(0,4),M是圓上一點,∠BMO=120°,圓心C的坐標是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于A、B兩點,點A的坐標是(0,4),M是圓上一點,∠BMO精英家教網(wǎng)=120°,求⊙C的半徑和圓心C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A和點B,點A的坐標為(0,2),點B的坐標為(2
3
,0),解答下列各題:
(1)求線段AB的長;
(2)求⊙C的半徑及圓心C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A(0,2)和點B,D為⊙C在第一象限內(nèi)的一點,且∠ODB=60°,求⊙C的半徑、線段AB的長、B點坐標及圓心C的坐標.

查看答案和解析>>

同步練習(xí)冊答案