【題目】若關(guān)于x的分式方程 無(wú)解,則m的值為( 。
A.﹣1.5
B.1
C.﹣1.5或2
D.﹣0.5或﹣1.5
【答案】D
【解析】解:方程兩邊都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),
即(2m+1)x=﹣6,
分兩種情況考慮:
①∵當(dāng)2m+1=0時(shí),此方程無(wú)解,
∴此時(shí)m=﹣0.5,
②∵關(guān)于x的分式方程無(wú)解,
∴x=0或x﹣3=0,
即x=0,x=3,
當(dāng)x=0時(shí),代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),
解得:此方程無(wú)解;
當(dāng)x=3時(shí),代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),
解得:m=﹣1.5,
∴m的值是﹣0.5或﹣1.5,
故選D.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用分式方程的解,掌握分式方程無(wú)解(轉(zhuǎn)化成整式方程來(lái)解,產(chǎn)生了增根;轉(zhuǎn)化的整式方程無(wú)解);解的正負(fù)情況:先化為整式方程,求整式方程的解即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx-5的圖象經(jīng)過(guò)點(diǎn)A(2,-1).
(1)求k的值;
(2)畫出這個(gè)函數(shù)的圖象;
(3)若將此函數(shù)的圖象向上平移m個(gè)單位后與坐標(biāo)軸圍成的三角形的面積為1,請(qǐng)直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)能被13整除的自然數(shù)我們稱為“十三數(shù)”,“十三數(shù)”的特征是:若把這個(gè)自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個(gè)自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個(gè)數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個(gè)數(shù)的差是383﹣357=26,26能被13整除,因此383357是“十三數(shù)”.
(1)判斷3253和254514是否為“十三數(shù)”,請(qǐng)說(shuō)明理由.
(2)若一個(gè)四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個(gè)位數(shù)字相同,則稱這個(gè)四位數(shù)為“間同數(shù)”.
①求證:任意一個(gè)四位“間同數(shù)”能被101整除.
②若一個(gè)四位自然數(shù)既是“十三數(shù)”,又是“間同數(shù)”,求滿足條件的所有四位數(shù)的最大值與最小值之差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+2與y軸相交于點(diǎn)A0,過(guò)點(diǎn)A0作軸的平行線交直線y=0.5x+1于點(diǎn)B1,過(guò)點(diǎn) B1作軸的平行線交直線y=x+2于點(diǎn)A1,再過(guò)點(diǎn)作軸的平行線交直線y=0.5x+1于點(diǎn)B2,過(guò)點(diǎn) B2作軸的平行線交直線y=x+2于點(diǎn)A2,…,依此類推,得到直線y=x+2上的點(diǎn)A1 ,A2 ,A3 ,…,與直線y=0.5x+1上的點(diǎn)B1,B2,B3,…,則A7B8的長(zhǎng)為( )
A.64 B.128 C.256 D.512
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有3個(gè)有理數(shù)x,y,z,若x=,且x與y互為相反數(shù),y是z的倒數(shù).
(1)當(dāng)n為奇數(shù)時(shí),你能求出x,y,z這三個(gè)數(shù)嗎?當(dāng)n為偶數(shù)時(shí),你能求出x,y,z這三個(gè)數(shù)嗎?若能,請(qǐng)計(jì)算并寫出結(jié)果;若不能,請(qǐng)說(shuō)明理由.
(2)根據(jù)(1)的結(jié)果計(jì)算xy-yn-(y-z)2 014的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售A型和B型兩種型號(hào)的電腦,銷售一臺(tái)A型電腦可獲利120元,銷售一臺(tái)B型電腦可獲利140元.該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的3倍.設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.
(1)求y與x的關(guān)系式;
(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售利潤(rùn)最大?
(3)若限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),則這100臺(tái)電腦的銷售總利潤(rùn)能否為13600元?若能,請(qǐng)求出此時(shí)該商店購(gòu)進(jìn)A型電腦的臺(tái)數(shù);若不能,請(qǐng)求出這100臺(tái)電腦銷售總利潤(rùn)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點(diǎn),過(guò)點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對(duì)頂角為 ,∠BOE的鄰補(bǔ)角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:O是直線AB上的一點(diǎn),是直角,OE平分.
(1)如圖1.若.求的度數(shù);
(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖2的位置,探究和的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com