精英家教網 > 初中數學 > 題目詳情

【題目】已知二次函數 的圖象如圖所示,有下列4個結論,其中正確的結論是( )

A.
B.
C.
D.

【答案】C
【解析】拋物線的開口向下,則a<0;…①

拋物線的對稱軸為x=1,則- =1,b=-2a;…②

拋物線交y軸于正半軸,則c>0;…③

拋物線與x軸有兩個不同的交點,則:△=b2-4ac>0;

由②知:b>0,b+2a=0;

又由①③得:abc<0;

由圖知:當x=-1時,y<0;即a-b+c<0,b>a+c;

故答案為:C.

根據拋物線的開口方向,對稱軸的位置及拋物線與y軸的交點情況,可知a<0、c>0、b>0,即可對A作出判斷;根據對稱軸x=1,可得出b+2a=0,可對B作出判斷;將b > a + c變形為a-b+c<0,根據x=-1,即可作出判斷;根據拋物線與x軸的交點個數可對D作出判斷。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1 , O2 , O3 , … 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒 個單位長度,則第2016秒時,點P的坐標是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于 的一元二次方程 x2+(2m-1)x+m2=0有兩個實數根 x1 和 x2
(1)求實數 m 的取值范圍;
(2)當 x12-x22 時,求 m 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y= (k≠0)與一次函數y=kx+k(k≠0)在同一平面直角坐標系內的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】同時擲兩枚標有數字1~6的正方形骰子,數字和為1的概率是 。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠BAC=90°,AD⊥BC,垂足為點 D.下列說法中:①∠B的余角只有∠BAD;②∠B=∠C;③線段 AB 的長度表示點 B 到直線 AC 的距離;④AB·AC=BC·AD;一定正確的有( )

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明從家出發(fā),沿一條直道散步到離家450 m的郵局,經過一段時間原路返回,剛好在第12 min回到家中.設小明出發(fā)第t min時的速度為v m/min,vt之間的函數關系如圖所示(圖中的空心圈表示不包含這一點).

(1)小明出發(fā)第2 min時離家的距離為 m;

(2)2< t ≤6時,求小明的速度a;

(3)求小明到達郵局的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖1,把△ABC沿DE折疊,使點A落在點A’處,試探索∠1+∠2與∠A的關系.(證明).

(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點A與點I重合,若∠1+∠2=130°,求∠BIC的度數;

(3)如圖3,在銳角△ABC中,BF⊥AC于點F,CG⊥AB于點G,BF、CG交于點H,把△ABC折疊使點A和點H重合,試探索∠BHC與∠1+∠2的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案