(2008•白銀)附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

【答案】分析:將等式的兩邊同時除以AC和BC,然后利用三角函數(shù)代入,整理即可.
解答:解:由題消去AC、BC、CD,
得到sin(α+β)=sinα•cosβ+cosα•sinβ,
給AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,
兩邊同除以AC•BC得,
sin(α+β)=•sinα+•sinβ,
=cosβ,=cosα,
∴sin(α+β)=sinα•cosβ+cosα•sinβ.
點評:本題為討論型問題,求解過程中運用了三角函數(shù)公式,對邏輯推理能力和運算能力進行考查.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

(2008•白銀)附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2008•白銀)附加題:如圖,網(wǎng)格小正方形的邊長都為1.在△ABC中,試畫出三邊的中線(頂點與對邊中點連接的線段),然后探究三條中線位置及其有關線段之間的關系,你發(fā)現(xiàn)了什么有趣的結(jié)論?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前知識點回歸+鞏固 專題15 三角形(解析版) 題型:解答題

(2008•白銀)附加題:如圖,網(wǎng)格小正方形的邊長都為1.在△ABC中,試畫出三邊的中線(頂點與對邊中點連接的線段),然后探究三條中線位置及其有關線段之間的關系,你發(fā)現(xiàn)了什么有趣的結(jié)論?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年甘肅省白銀等9市州中考數(shù)學試卷(解析版) 題型:解答題

(2008•白銀)附加題:由直角三角形邊角關系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

同步練習冊答案