若等邊△ABC的邊長(zhǎng)為2cm,那么△ABC的面積為
 
分析:根據(jù)等邊三角形三線合一的性質(zhì),根據(jù)勾股定理即可求AD的值,根據(jù)AD、BC即可計(jì)算△ABC的面積.
解答:精英家教網(wǎng)解:∵等邊三角形三線合一,
∴D為BC的中點(diǎn),
∴BD=DC=1cm,AB=2cm,
在Rt△ABD中,AD=
AB2BD2
=
3
cm,
∴△ABC的面積為
1
2
BC•AD=
1
2
×2×
3
cm2=
3
cm2,
故答案為
3
cm2
點(diǎn)評(píng):本題考查了等邊三角形三線合一的性質(zhì),考查了勾股定理在直角三角形中的運(yùn)用,考查了三角形面積的計(jì)算,本題中根據(jù)勾股定理計(jì)算AD的長(zhǎng)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,若等邊△ABC的邊長(zhǎng)為2
3
cm,內(nèi)切圓O分別切三邊于D,E,F(xiàn),則陰影部分的面積是( 。
A、2π
B、π
C、
1
2
π
D、
1
3
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)若等邊△ABC的邊長(zhǎng)為6cm長(zhǎng),內(nèi)切圓O分別切三邊于D、E、F,則陰影部分的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•自貢)如圖,若等邊△ABC的邊長(zhǎng)為6cm,內(nèi)切圓⊙O分別切三邊于點(diǎn)D,E,F(xiàn),則陰影部分的面積是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊△ABC的邊長(zhǎng)為2,頂點(diǎn)A、B分別在x軸、y軸的正半軸上移動(dòng).
(1)當(dāng)OA=
3
時(shí),求點(diǎn)C的坐標(biāo).
(2)在(1)的條件下,求四邊形AOBC的面積.
(3)是否存在一點(diǎn)C,使線段OC的長(zhǎng)有最大值?若存在,請(qǐng)求出此時(shí)點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案