如圖,已知⊙O的半徑為4,CD為⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC。

(1)求證:AB是⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積。
(1)證明見解析;(2);(3).

試題分析:(1)如圖,連接OA,欲證明AAB為⊙O的切線,只需證明AB⊥OA即可;
(2)如圖,連接AD,構(gòu)建直角△ADC,利用“30度角所對的直角邊是斜邊的一半”求得AD=4,然后利用勾股定理來求弦AC的長度;
(3)根據(jù)圖示知,圖中陰影部分的面積=扇形ADO的面積+△AOC的面積.
試題解析:(1)證明:如圖,連接OA.
∵AB=AC,∠ABC=30°,
∴∠ABC=∠ACB=30°.
∴∠AOB=2∠ACB=60°,
∴在△ABO中,∠BAO=180°-∠ABO-∠AOB=90°,即AB⊥OA,
又∵OA是⊙O的半徑,
∴AB為⊙O的切線;
(2)解:如圖,連接AD.

∵CD是⊙O的直徑,
∴∠DAC=90°.
∵由(1)知,∠ACB=30°,
∴AD= CD=4,
則根據(jù)勾股定理知AC=.
即弦AC的長為.
(3)由(2)知,在△ADC中,∠DAC=90°,AD=4,AC=
則S△ADC=AD•AC=×4×=
∵點O是△ADC斜邊上的中點,
∴S△AOC=S△ADC=.
根據(jù)圖示知,S陰影=S扇形ADO+S△AOC=,
即圖中陰影部分的面積是
考點: 1.切線的判定;2.扇形面積的計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知排水管的截面為如圖所示的圓O,半徑為10,圓心O到水面的距離是6,求水面寬AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA﹑PB是⊙O的切線,A﹑B 是切點,AC是⊙O的直徑,∠ACB=70º.求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點P,PD⊥AC于點D.

(1)求證:PD是⊙O的切線;
(2)若∠CAB=120°,AB=6,求BC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若相交兩圓⊙O1、⊙O2的半徑分別是2和4,則圓心距O1O2可能取的值是(       )
A.1B.2C.4D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓半徑分別為3㎝和7㎝,當圓心距d=10㎝時,兩圓的位置關(guān)系為(   )
A.外離B.內(nèi)切C.相交D.外切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圓內(nèi)的兩條弦AB、CD相交于E,∠D=35°,∠AEC=105°,則∠C=(   )

(A)60°         (B)70°         (C)80°         (D)85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓的半徑分別是2和3,這兩圓的圓心距為5,則這兩圓的位置關(guān)系是( 。
A.外切B.內(nèi)切C.相交D.外離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在Rt△ABC中,∠C=90°,AB=5,BC=3,以AC所在的直線為軸旋轉(zhuǎn)一周,所得圓錐的側(cè)面積為( )
A.12πB.15πC.24πD.30π

查看答案和解析>>

同步練習(xí)冊答案