【題目】 如圖,已知△ABC為等邊三角形,DE分別為BC、AC邊上的兩動(dòng)點(diǎn)(與點(diǎn)A、B、C不重合),且總使CD = AE,ADBE相交于點(diǎn)F

1)求證:AD = BE

2)求∠BFD的度數(shù).

【答案】1)見(jiàn)解析(260°.

【解析】

1)根據(jù)等邊三角形的性質(zhì)可知∠BAC=∠C60°,ABCA,結(jié)合AECD,可證明△ABE≌△CAD,從而證得結(jié)論;

2)根據(jù)∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC60°.

1)證明:∵△ABC為等邊三角形,

∴∠BAC=∠C60°,ABCA

在△ABE與△CAD中,

,

∴△ABE≌△CADSAS).

ADBE

2)解:∵△ABE≌△CAD

∴∠ABE=∠CAD

∵∠BFD=∠ABE+∠BAD,

∴∠BFD=∠CAD+∠BAD=∠BAC60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30°,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),直線EF與⊙O交于G,H兩點(diǎn),若⊙O的半徑為6,則GE+FH的最大值為(  )

A. 6 B. 9 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,1),點(diǎn)C(1,0),正方形AOCD的兩條對(duì)角線的交點(diǎn)為B,延長(zhǎng)BD至點(diǎn)G,使DG=BD,延長(zhǎng)BC至點(diǎn)E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.

(Ⅰ)如圖①,求OD的長(zhǎng)及的值;

(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.

①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠BAG′=90°時(shí),求α的大小;

②在旋轉(zhuǎn)過(guò)程中,求AF′的長(zhǎng)取最大值時(shí),點(diǎn)F′的坐標(biāo)及此時(shí)α的大。ㄖ苯訉(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在RtABC中,a,b分別是∠A,∠B的對(duì)邊,c為斜邊,如果已知兩個(gè)元素a,∠B,就可以求出其余三個(gè)未知元素b,c,∠A

1)求解的方法有多種,請(qǐng)你按照下列步驟,完成一種求解過(guò)程.

第一步:已知:a,B,用關(guān)系式:_______________,求出:________________;

第二步:已知:_____,用關(guān)系式:_______________,求出:_________________;

第三步:已知:_____,用關(guān)系式:_______________,求出:_________________.

2)請(qǐng)你分別給出a,∠B的一個(gè)具體數(shù)據(jù),然后按照(1)中的思路,求出b,c,∠A的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光明社區(qū)為了調(diào)查居民對(duì)社區(qū)服務(wù)的滿意度,隨機(jī)抽取了社區(qū)部分居民進(jìn)行問(wèn)卷調(diào)查;用表示“很滿意”,表示“滿意”,表示“比較滿意”,表示“不滿意”,如圖是根據(jù)問(wèn)卷調(diào)查統(tǒng)計(jì)資料繪制的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問(wèn)題:

(1)本次問(wèn)卷調(diào)查共調(diào)查了多少個(gè)居民?

(2)求出調(diào)查結(jié)果為的人數(shù),并將直方圖中部分的圖形補(bǔ)充完整;

(3)如果該社區(qū)有居民5000人,請(qǐng)你估計(jì)對(duì)社區(qū)服務(wù)感到“不滿意”的居民約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1和圖2,是直線上一動(dòng)點(diǎn),兩點(diǎn)在直線的同側(cè),且點(diǎn)所在直線與不平行.

1)當(dāng)點(diǎn)運(yùn)動(dòng)到位置時(shí),距離點(diǎn)最近,在圖1中的直線上畫(huà)出點(diǎn)的位置;

2)當(dāng)點(diǎn)運(yùn)動(dòng)到位置時(shí),與點(diǎn)的距離和與點(diǎn)距兩相等,請(qǐng)?jiān)趫D2中作出位置;

3)在直線上是否存在這樣一點(diǎn),使得到點(diǎn)的距離與到點(diǎn)的距離之和最小?若存在請(qǐng)?jiān)趫D3中作出這點(diǎn),若不存在清說(shuō)明理由.

(要求:不寫(xiě)作法,請(qǐng)保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠ACB90°,BC2,∠A30°,點(diǎn)EF分別是線段BC,AC的中點(diǎn),連結(jié)EF

1)線段BEAF的位置關(guān)系是   ,   

2)如圖2,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.

3)如圖3,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a180°),延長(zhǎng)FCAB于點(diǎn)D,如果AD62,求旋轉(zhuǎn)角a的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①、圖②,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,小正方形的頂點(diǎn)稱為格點(diǎn),圖①和圖②中的點(diǎn)A、點(diǎn)B都是格點(diǎn).分別在圖①、圖②中畫(huà)出格點(diǎn)C,并滿足下面的條件:

1)在圖①中,使∠ABC90°.此時(shí)AC的長(zhǎng)度是

2)在圖②中,使ABAC.此時(shí)ABC的邊AB上的高是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,點(diǎn)EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1,BC3,AE2,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案