【題目】(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過點(diǎn)B,得到折痕BM,同時(shí)得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論;
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,猜測MN與BM的數(shù)量關(guān)系,無需證明.
【答案】(1)30,見解析。(2)
【解析】
(1)猜想:∠MBN=30°.如圖1中,連接AN.想辦法證明△ABN是等邊三角形即可解決問題;
(2)MN=BM.折紙方案:如圖2中,折疊△BMN,使得點(diǎn)N落在BM上O處,折痕為MP,連接OP.只要證明△MOP≌△BOP,即可解決問題.
(1)猜想:∠MBN=30°.
證明:如圖1中,連接AN,∵直線EF是AB的垂直平分線,
∴NA=NB,由折疊可知,BN=AB,
∴AB=BN=AN,
∴△ABN是等邊三角形,
∴∠ABN=60°,
∴NBM=∠ABM=∠ABN=30°.
(2)結(jié)論:MN=BM.
折紙方案:如圖2中,折疊△BMN,使得點(diǎn)N落在BM上O處,
折痕為MP,連接OP.
理由:由折疊可知△MOP≌△MNP,
∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,
∠MOP=∠MNP=90°,
∴∠BOP=∠MOP=90°,
∵OP=OP,
∴△MOP≌△BOP,
∴MO=BO=BM,
∴MN=BM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016黑龍江省哈爾濱市)已知:△ABC內(nèi)接于⊙O,D是上一點(diǎn),OD⊥BC,垂足為H.
(1)如圖1,當(dāng)圓心O在AB邊上時(shí),求證:AC=2OH;
(2)如圖2,當(dāng)圓心O在△ABC外部時(shí),連接AD、CD,AD與BC交于點(diǎn)P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點(diǎn),連接DE交BC于點(diǎn)Q、交AB于點(diǎn)N,連接OE,BF為⊙O的弦,BF⊥OE于點(diǎn)R交DE于點(diǎn)G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB的同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F.
(1)如圖1,若∠ACD=60°,則∠AFB=______,如圖2,若∠ACD=90°,則∠AFB=______,如圖3,若∠ACD=α,則∠AFB=______(用含α的式子表示);
(2)設(shè)∠ACD=α,將圖3中的△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),如圖4,試探究∠AFB與α的數(shù)量關(guān)系,并予以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形CEFG是兩個(gè)邊長分別為a,b的正方形.
(1)用含a,b的代數(shù)式表示三角形BGF的面積;(2)當(dāng),時(shí),求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊三角尺AOB與COD的直角頂點(diǎn)O重合在一起,若∠AOD=4∠BOC,OE為∠BOC的平分線,則∠DOE的度數(shù)為( 。
A. 36° B. 45° C. 60° D. 72°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人用如下方法測一鋼管的內(nèi)徑:將一小段鋼管豎直放在平臺(tái)上.向內(nèi)放入兩個(gè)半徑為5 cm的鋼球,測得上面一個(gè)鋼球的最高點(diǎn)到底面的距離DC=16 cm(鋼管的軸截面如圖所示),則鋼管的內(nèi)徑AD的長為_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M、N是正方形ABCD的邊CD上的兩個(gè)動(dòng)點(diǎn),滿足AM=BN,連接AC交BN于點(diǎn)E,連接DE交AM于點(diǎn)F,連接CF,若正方形的邊長為4,則線段CF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在長方形ABCD中,將△ABE沿著AE折疊至△AEF的位置,點(diǎn)F在對角線AC上,若BE=3,EC=5,則線段CD的長是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=3,BC=2,沿對角線AC剪開(如圖①);固定△ADC,把△ABC沿AD方向平移(如圖②),當(dāng)兩個(gè)三角形重疊部分的面積最大時(shí),移動(dòng)的距離AA′等于( )
A. 1 B. 1.5 C. 2 D. 0.8或1.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com