如果(1)所示為一上面無(wú)蓋的正方體紙盒,現(xiàn)將其剪開(kāi)展成平面圖,如圖(2)所示已知展開(kāi)圖中每個(gè)正方形的邊長(zhǎng)為1.
(1)求在該展開(kāi)圖中可畫(huà)出的最長(zhǎng)線段的長(zhǎng)度?這樣的線段可以畫(huà)幾條?
(2)求∠B′A′C′的度數(shù)?說(shuō)明理由.
(3)在圖1中若螞蟻從點(diǎn)A′沿著正方體的表面爬行到點(diǎn)C,試求爬行的最短路程.

解:(1)如圖2,AH=1+1+1=3,CH=1,
即最長(zhǎng)線段AC的長(zhǎng)度是:=,這樣的線段可以畫(huà)4條,如圖(2)線段EB′、線段FM、線段A′C′、線段GH;且線段的長(zhǎng)度都是;

(2)連接B′C′,
由圖形可知:∠A′B′F=∠C′B′F=45°,A′B′=B′C′=
∴∠A′B′C′=90°,
即△A′B′C′是等腰直角三角形,
∴∠B′A′C′=45°;

(3)
如圖所示展開(kāi):連接A′C,則線段A′C的長(zhǎng)就是螞蟻從點(diǎn)A′沿著正方體的表面爬行到點(diǎn)C的最短路程,
在Rt△A′C′C中,A′C′=1+1=2,C′C=1,∠A′C′C=90°,
由勾股定理得:A′C==
分析:(1)根據(jù)圖形得出符合條件的線段有4條,根據(jù)勾股定理求出線段的長(zhǎng)即可;
(2)連接B′C′,根據(jù)已知正方體得出∠A′B′F=∠C′B′F=45°,A′B′=B′C′,推出△A′B′C′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出即可;
(3)畫(huà)出圖形,連接A′C,根據(jù)勾股定理求出A′C的長(zhǎng)即可.
點(diǎn)評(píng):本題考查了平面展開(kāi)-最短路線問(wèn)題和勾股定理,等腰直角三角形的性質(zhì)的綜合運(yùn)用,關(guān)鍵是能正確畫(huà)出圖形,題目比較典型,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、取一張長(zhǎng)30cm、寬6cm的紙條,將它每3cm一段,一反一正像“手風(fēng)琴”那樣折疊起來(lái),并在折疊好的紙上畫(huà)出字母E.用小刀把畫(huà)出的字母E挖去,拉開(kāi)“手風(fēng)琴”,你就可以得到一條以字母E為圖案的花邊(如圖所示).
(1)在你所得的花邊中,相鄰兩個(gè)圖案有什么關(guān)系?相間的兩個(gè)圖案又有什么關(guān)系?
(2)如果以相鄰兩個(gè)圖案為一組構(gòu)成一個(gè)圖案,任兩個(gè)圖案之間有什么關(guān)系?三個(gè)圖案為一組呢?
(3)在上面的活動(dòng)中,如果先把紙條縱向?qū)φ,再折成“手風(fēng)琴”,然后繼續(xù)上面的步驟,此時(shí)會(huì)得到的花邊是軸對(duì)稱(chēng)圖形嗎?先猜一猜再做一做.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,一根長(zhǎng)2.5米的木棍(AB),斜靠在與地面(OM)垂直的墻(ON)上,此時(shí)OB的精英家教網(wǎng)距離為0.7米,設(shè)木棍的中點(diǎn)為P.若木棍A端沿墻下滑,且B端沿地面向右滑行.
(1)如果木棍的頂端A沿墻下滑0.4米,那么木棍的底端B向外移動(dòng)多少距離?
(2)請(qǐng)判斷木棍滑動(dòng)的過(guò)程中,點(diǎn)P到點(diǎn)O的距離是否變化,并簡(jiǎn)述理由.
(3)在木棍滑動(dòng)的過(guò)程中,當(dāng)滑動(dòng)到什么位置時(shí),△AOB的面積最大?簡(jiǎn)述理由,并求出面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,一張三角形紙片ABC,∠ACB=90°,AC=8cm,BC=6cm.沿斜邊AB的中線CD把這張紙片剪成△AC1D1和△BC2D2兩個(gè)三角形(如圖2所示).將紙片△AC1D1沿直線D2B(AB)方向平移(點(diǎn)A、D1、D2、B始終在同一直線上),當(dāng)點(diǎn)A與點(diǎn)B重合時(shí),停止平移.設(shè)平移的速度是1cm/秒,平移的時(shí)間為x(秒),△AC1D1與△BC2D2重疊部分面積為y(cm2).
(1)求CD的長(zhǎng)和斜邊上的高CH;
(2)在平移過(guò)程中(如圖3),設(shè)C1D1與BC2交于點(diǎn)E,AC1與C2D2、BC2分別交于點(diǎn)F、P.那么四邊形FD2D1E是否可能是菱形?為什么?如果可能,請(qǐng)求出相應(yīng)的D1E=D2F的值;
(3)請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式,以及自變量的取值范圍;
(4)是否存在這樣的x的值,使重疊部分面積為3cm2?若存在,求出相應(yīng)的x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•錫山區(qū)一模)某種規(guī)格小紙杯的側(cè)面是由一半徑為18cm、圓心角是60°的扇形OAB剪去一半徑12cm的同心圓扇形OCD所圍成的(不計(jì)接縫)(如圖1).
(1)求紙杯的底面半徑和側(cè)面積(結(jié)果保留π)
(2)要制作這樣的紙杯側(cè)面,如果按照?qǐng)D2所示的方式剪裁(不允許有拼接),至少要用多大的矩形紙片?
(3)如圖3,若在一張半徑為18cm的圓形紙片上剪裁這樣的紙杯側(cè)面,最多能裁出多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,一根長(zhǎng)2.5m的木棍(AB),斜靠在與地面(OM)垂直的墻(ON)上,這時(shí)AO的距離為2.4m.若木棍A端沿墻下滑,則B端沿地面向右滑行.
(1)如果木棍的頂端A沿墻下滑0.4m,請(qǐng)你算一算,底端滑動(dòng)的距離;
(2)設(shè)木棍的中點(diǎn)為P,請(qǐng)判斷木棍滑動(dòng)的過(guò)程中,點(diǎn)P到點(diǎn)O的距離是否變化?請(qǐng)簡(jiǎn)述理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案