如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設(shè)P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關(guān)系式;
(2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.
(1)過點P作PE⊥BC于E
Rt△ABC中,AC=
AB2+BC2
=
62+82
=10(米)
由題意知:AP=2t,CQ=t,則PC=10-2t
由AB⊥BC,PE⊥BC得PEAB
PE
AB
=
PC
AC

即:
PE
6
=
10-2t
10
,
∴PE=
3
5
(10-2t)=-
6
5
t+6
又∵S△ABC=
1
2
×6×8=24
∴S=S△ABC-S△PCQ=24-
1
2
•t•(-
6
5
t+6)=
3
5
t2-3t+24
即:S=
3
5
t2-3t+24(8分)

(2)假設(shè)四邊形ABQP與△CPQ的面積相等,則有:
3
5
t2-3t+24=12
即:t2-5t+20=0
∵b2-4ac=(-5)2-4×1×20<0
∴方程無實根
∴在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積不能相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2-3x-4的圖象交x軸于A、B兩點.
(1)若點P在線段AB上運動,作PQ⊥x軸,交拋物線于點Q,求PQ的最大值;
(2)已知點D(5,6)在拋物線上,若點M在線段AD上運動,作MN⊥x軸,交拋物線于點N,求MN的最大值;
(3)在(2)的運動過程中,求△ADN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=x2+bx+c過點(2,-2)和(-1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(0,-3),且頂點坐標(biāo)為(-1,-4).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的圖象與x軸的交點為A、B,與y軸的交點為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某旅游勝地欲開發(fā)一座景觀山.從山的側(cè)面進行勘測,迎面山坡線ABC由同一平面內(nèi)的兩段拋物線組成,其中AB所在的拋物線以A為頂點、開口向下,BC所在的拋物線以C為頂點、開口向上.以過山腳(點C)的水平線為x軸、過山頂(點A)的鉛垂線為y軸建立平面直角坐標(biāo)系如圖(單位:百米).已知AB所在拋物線的解析式為y=-
1
4
x2+8,BC所在拋物線的解析式為y=
1
4
(x-8)2,且已知B(m,4).
(1)設(shè)P(x,y)是山坡線AB上任意一點,用y表示x,并求點B的坐標(biāo);
(2)從山頂開始、沿迎面山坡往山下鋪設(shè)觀景臺階.這種臺階每級的高度為20厘米,長度因坡度的大小而定,但不得小于20厘米,每級臺階的兩端點在坡面上(見圖).
①分別求出前三級臺階的長度(精確到厘米);
②這種臺階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點D)處恰好有一小塊平地,可以用來建造索道站.索道的起點選擇在山腳水平線上的點E處,OE=1600(米).假設(shè)索道DE可近似地看成一段以E為頂點、開口向上的拋物線,解析式為y=
1
28
(x-16)2試求索道的最大懸空高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°AC=BC=6cm,正方形DEFG的邊長為2cm,其一邊EF在BC所在的直線L上,開始時點F與點C重合,讓正方形DEFG沿直線L向右以每秒1cm的速度作勻速運動,最后點E與點B重合.
(1)請直接寫出該正方形運動6秒時與△ABC重疊部分面積的大。
(2)設(shè)運動時間為x(秒),運動過程中正方形DEFG與△ABC重疊部分的面積為y(cm2).
①在該正方形運動6秒后至運動停止前這段時間內(nèi),求y與x之間的函數(shù)關(guān)系式;
②在該正方形整個運動過程中,求當(dāng)x為何值時,y=
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=BC=2,高BE=
3
,在BC邊的延長線上取一點D,使CD=3.
(1)現(xiàn)有一動點P由A沿AB移動,設(shè)AP=t,S△PCD=S,求S與t之間的關(guān)系式及自變量t的取值范圍.
(2)在(1)的條件下,當(dāng)t=
1
3
時,過點C作CH⊥PD于H,設(shè)K=7CH:9PD.求證:關(guān)于x的二次函數(shù)y=-x2-(10k-
3
)x+2k
的圖象與x軸的兩個交點關(guān)于原點對稱.
(3)在(1)的條件下,是否存在正實數(shù)t,使PD邊上的高CH=
1
2
CD
?如果存在,請求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

體育課上,老師訓(xùn)練學(xué)生的項目是投籃,假設(shè)一名同學(xué)投籃后,籃球運行的軌跡是一段拋物線,將所得軌跡形成的拋物線放在如圖所示的坐標(biāo)系中,得到解析式為y=-
1
5
x2+
2
5
x+3.3(單位:m).請你根據(jù)所得的解析式,回答下列問題:
(1)球在空中運行的最大高度為多少米;
(2)如果一名學(xué)生跳投時,球出手離地面的高度為2.25m,請問他距籃球筐中心的水平距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,人工噴泉有一個豎直的噴水槍AB,噴水口A距地面2米,噴水水流的軌跡是拋物線,如果要求水流的最高點P到噴水槍AB所在直線的距離為1米,且水流著地點C距離水槍底部B的距離為
5
2
米,那么水流的最高點距離地面是多少米?

查看答案和解析>>

同步練習(xí)冊答案