如圖,已知直線AB、CD交于點(diǎn)O,OE平分∠AOC,OF平分∠BOD,
(1)試說(shuō)明:∠COE=∠DOF.
(2)問(wèn):OE、OF在一條直線上嗎?為什么?
(1)∵直線AB、CD交于點(diǎn)O,
∴∠AOC=∠BOD,
∵OE平分∠AOC,OF平分∠BOD,
∴∠COE=
1
2
∠AOC,∠DOF=
1
2
∠BOD,
∴∠COE=∠DOF;

(2)∵OE平分∠AOC,
∴∠AOE=∠COE,
∴∠COE=∠DOF,
∴∠AOE+∠AOF=∠COE+∠AOE+∠AOD=180°,
∴OE、OF在一條直線上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正比例函數(shù)y=kx和一次函數(shù)y=ax+b的圖象都經(jīng)過(guò)A(1,2),且一次函數(shù)的圖象交x軸于點(diǎn)B(3,0),交y軸于C點(diǎn).
(1)求正比例函數(shù)和一次函數(shù)的表達(dá)式.
(2)求兩直線與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,OA⊥OC,OB⊥OD,∠AOD=125°,則∠BOC的度數(shù)是( 。
A.35°B.45°C.55°D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線l1與l2相交于點(diǎn)P,l1的函數(shù)表達(dá)式為y=2x+3,點(diǎn)P的橫坐標(biāo)為-1,且l2交y軸于點(diǎn)A(0,-1).求直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線l1,l2交于點(diǎn)A,直線l2與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線l1所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-2x+2.
(1)求點(diǎn)C的坐標(biāo)及直線l2所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求△ABC的面積;
(3)在直線l2上存在一點(diǎn)P,使得PB=PC,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平面上兩條直線相交于一點(diǎn),三條直線倆兩相交,每個(gè)交點(diǎn)都不經(jīng)過(guò)第三條直線.
(1)5條直線的交點(diǎn)為______個(gè).
(2)請(qǐng)?zhí)剿鱪條直線的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=kx-6經(jīng)過(guò)點(diǎn)A(4,0),直線y=-3x+3與x軸交于點(diǎn)B,且兩直線交于點(diǎn)C.
(1)求k的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

三條直線兩兩相交,最少有______個(gè)交點(diǎn),最多有______個(gè)交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

探究型問(wèn)題
如圖所示,在同一平面內(nèi),兩條直線相交時(shí)最多有1個(gè)交點(diǎn),三條直線相交時(shí)最多有3個(gè)交點(diǎn),四條直線相交時(shí)最多有6個(gè)交點(diǎn).

(1)當(dāng)五條直線相交時(shí)交點(diǎn)最多會(huì)有多少個(gè)?
(2)猜想n條直線相交時(shí)最多有幾個(gè)交點(diǎn)?(用含n的代數(shù)式表示)
(3)算一算,同一平面內(nèi)10條直線最多有多少個(gè)?
(4)平面上有10條直線,無(wú)任何3條交于一點(diǎn)(3條以上交于一點(diǎn)也無(wú)),也無(wú)重合,它們會(huì)出現(xiàn)31個(gè)交點(diǎn)嗎?如果能給出一個(gè)畫法;如果不能請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案