(2010•奉賢區(qū)二模)已知,矩形OABC在平面直角坐標(biāo)系中位置如圖所示,A的坐標(biāo)(4,0),C的坐標(biāo)(0,-2),直線y=-x與邊BC相交于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo);
(2)拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、D、O,求此拋物線的表達(dá)式;
(3)在這個(gè)拋物線上是否存在點(diǎn)M,使O、D、A、M為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)由于BC∥x軸,那么B、C兩點(diǎn)的縱坐標(biāo)相同,已知了點(diǎn)C的坐標(biāo),將其縱坐標(biāo)代入直線OD的解析式中,即可求得點(diǎn)D的坐標(biāo);
(2)已知拋物線圖象上的A、O、D三點(diǎn)坐標(biāo),可利用待定系數(shù)法求得該拋物線的解析式;
(3)此題應(yīng)分作三種情況考慮:
①所求的梯形以O(shè)A為底,那么OA∥DM,由于拋物線是軸對(duì)稱圖形,那么D點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)一定滿足M點(diǎn)的要求,由此可得M點(diǎn)的坐標(biāo);
②所求的梯形以O(shè)D為底,那么OD∥AM,所以直線AM、直線OD的斜率相同,已知點(diǎn)AD的坐標(biāo),即可確定直線AM的解析式,聯(lián)立拋物線的解析式,即可確定點(diǎn)M的坐標(biāo);
③所求的梯形以AD為底,那么AD∥OM,參照②的解題思路,可先求出直線AD的解析式,進(jìn)而確定直線OM的解析式,聯(lián)立拋物線的解析式,即可求得點(diǎn)M的坐標(biāo).
解答:解:(1)∵D在BC上,BC∥x軸,C(0,-2),
∴設(shè)D(x,-2)(1分)
∵D在直線y=-x上,
∴-2=-x,x=3,(3分)
∴D(3,-2);(4分)

(2)∵拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、D、O;
,
解得:;(7分)
故所求的二次函數(shù)解析式為y=-x;(8分)

(3)假設(shè)存在點(diǎn)M,使O、D、A、M為頂點(diǎn)的四邊形是梯形;
①若以O(shè)A為底,BC∥x軸,拋物線是軸對(duì)稱圖形,
∴點(diǎn)M的坐標(biāo)為(1,-2);(9分)
②若以O(shè)D為底,過(guò)點(diǎn)A作OD的平行線交拋物線為點(diǎn)M,
∵直線OD為y=-x,
∴直線AM為y=-x+;
∴-x+=-x
解得:x1=-1,x2=4,(舍去)
∴點(diǎn)M的坐標(biāo)為(-1,);(11分)
③若以AD為底,過(guò)點(diǎn)O作AD的平行線交拋物線為點(diǎn)M,
∵直線AD為y=2x-8,
∴直線OM為y=2x,
∴2x=-x,
解得:x1=7,x2=0(舍去);
∴點(diǎn)M的坐標(biāo)為(7,14).(12分)
∴綜上所述,當(dāng)點(diǎn)M的坐標(biāo)為(1,-2)、(-1,)、(7,14)時(shí),以O(shè)、D、A、M為頂點(diǎn)的四邊形是梯形.
點(diǎn)評(píng):此題考查了矩形的性質(zhì)、二次函數(shù)解析式的確定、梯形的判定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法等知識(shí).同時(shí)還考查了分類討論的數(shù)學(xué)思想,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年上海市奉賢區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•奉賢區(qū)二模)已知:直角坐標(biāo)系xoy中,將直線y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過(guò)B(-3,0)及y軸上的C點(diǎn).若拋物線y=-x2+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),且經(jīng)過(guò)點(diǎn)C,
(1)求直線BC及拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,點(diǎn)P在拋物線的對(duì)稱軸上,且∠APD=∠ACB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年上海市奉賢區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•奉賢區(qū)二模)已知:在Rt△ABC中,∠ACB=90°,BC=6,AC=8,過(guò)點(diǎn)A作直線MN⊥AC,點(diǎn)E是直線MN上的一個(gè)動(dòng)點(diǎn),
(1)如圖1,如果點(diǎn)E是射線AM上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),連接CE交AB于點(diǎn)P.若AE為x,AP為y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(2)在射線AM上是否存在一點(diǎn)E,使以點(diǎn)E、A、P組成的三角形與△ABC相似,若存在求AE的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,過(guò)點(diǎn)B作BD⊥MN,垂足為D,以點(diǎn)C為圓心,若以AC為半徑的⊙C與以ED為半徑的⊙E相切,求⊙E的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年上海市奉賢區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2010•奉賢區(qū)二模)已知函數(shù)f(x)=,則f(-1)=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省潮州市松昌中學(xué)九年級(jí)第五階段考試數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•奉賢區(qū)二模)某班共有40名同學(xué),其中有2名同學(xué)習(xí)慣用左手吃飯,其余同學(xué)都習(xí)慣用右手吃飯,老師隨機(jī)抽1名同學(xué),習(xí)慣用左手吃飯的同學(xué)被選中的概率是   

查看答案和解析>>

同步練習(xí)冊(cè)答案